Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorZHU, Junqi
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorDAI, Zhanwu
IDREF: 22822473X
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorVIVIN, Philippe
IDREF: 176143106
dc.contributor.authorHENKE, Michael
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorPECCOUX, Anthony
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorOLLAT, Nathalie
IDREF: 126740062
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorDELROT, Serge
IDREF: 058711503
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorGAMBETTA, Gregory
ORCID: 0000-0002-8838-5050
IDREF: 225449641
dc.date.accessioned2020-04-07T09:31:23Z
dc.date.available2020-04-07T09:31:23Z
dc.date.issued2018
dc.identifier.issn0305-7364en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/4138
dc.description.abstractEnBackground and Aims Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). [br/] Methods The model included novel features that account for the effects of xylem embolism (f(PLC)) on leaf hydraulic conductance and residual stomatal conductance (g(0)), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. [br/] Key Results The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g(0) with increasing f(PLC) were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). [br/] Conclusions The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a basis for future modelling efforts aimed at describing the physiology and growth of individual organs in relation to water status.
dc.language.isoENen_US
dc.subjectBilan hydrique
dc.subjectVitis Vinifera
dc.subjectÉchange gazeux
dc.subjectChangement climatique
dc.subjectConductance hydraulique
dc.subject.enVitis Vinifera
dc.subject.enFunctional–Structural Plant Model
dc.subject.enHydraulic Conductance
dc.subject.enLeaf Water Potential
dc.subject.enPhotosynthesis
dc.subject.enPlant Water Status
dc.subject.enStomatal Conductance
dc.subject.enWater Stress
dc.subject.enWater Transport
dc.title.enA 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange
dc.title.alternativeAnn. bot.en_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1093/aob/mcx141en_US
dc.subject.halSciences du Vivant [q-bio]/Biologie végétaleen_US
dc.identifier.pubmed29293870en_US
bordeaux.journalAnnals of Botanyen_US
bordeaux.page833-848en_US
bordeaux.volume121en_US
bordeaux.hal.laboratoriesEcophysiologie et Génomique Fonctionnelle de la Vigne (EGFV) - UMR 1287en_US
bordeaux.issue5en_US
bordeaux.institutionBordeaux Sciences Agroen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-02534774
hal.version1
hal.date.transferred2020-04-07T09:31:29Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annals%20of%20Botany&rft.date=2018&rft.volume=121&rft.issue=5&rft.spage=833-848&rft.epage=833-848&rft.eissn=0305-7364&rft.issn=0305-7364&rft.au=ZHU,%20Junqi&DAI,%20Zhanwu&VIVIN,%20Philippe&HENKE,%20Michael&PECCOUX,%20Anthony&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record