Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorAGNIEL, Denis
dc.contributor.authorPARAST, Layla
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorHEJBLUM, Boris
ORCID: 0000-0003-0646-452X
IDREF: 189970316
dc.date.accessioned2021-05-07T08:09:07Z
dc.date.available2021-05-07T08:09:07Z
dc.date.created2020
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/27184
dc.description.abstractEnWhen evaluating the effectiveness of a treatment, policy, or intervention, the desired measure of effectiveness may be expensive to collect, not routinely available, or may take a long time to occur. In these cases, it is sometimes possible to identify a surrogate outcome that can more easily/quickly/cheaply capture the effect of interest. Theory and methods for evaluating the strength of surrogate markers have been well studied in the context of a single surrogate marker measured in the course of a randomized clinical study. However, methods are lacking for quantifying the utility of surrogate markers when the dimension of the surrogate grows and/or when study data are observational. We propose an efficient nonparametric method for evaluating high-dimensional surrogate markers in studies where the treatment need not be randomized. Our approach draws on a connection between quantifying the utility of a surrogate marker and the most fundamental tools of causal inference -- namely, methods for estimating the average treatment effect. We show that recently developed methods for incorporating machine learning methods into the estimation of average treatment effects can be used for evaluating surrogate markers. This allows us to derive limiting asymptotic distributions for key quantities, and we demonstrate their good performance in simulation.
dc.language.isoENen_US
dc.title.enDoubly-robust evaluation of high-dimensional surrogate markers
dc.typeDocument de travail - Pré-publicationen_US
dc.subject.halStatistiques [stat]/Méthodologie [stat.ME]en_US
dc.identifier.arxiv2012.01236en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamSISTM_BPH
bordeaux.import.sourcehal
hal.identifierhal-03100499
hal.version1
hal.exportfalse
workflow.import.sourcehal
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=AGNIEL,%20Denis&PARAST,%20Layla&HEJBLUM,%20Boris&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée