Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorSOFEU, Casimir
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorRONDEAU, Virginie
ORCID: 0000-0001-7109-4831
IDREF: 16662988X
dc.date.accessioned2021-05-06T12:45:26Z
dc.date.available2021-05-06T12:45:26Z
dc.date.created2019
dc.date.issued2020-01-28
dc.identifier.issn1932-6203en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/27172
dc.description.abstractEnBACKGROUND AND OBJECTIVE:The use of valid surrogate endpoints can accelerate the development of phase III trials. Numerous validation methods have been proposed with the most popular used in a context of meta-analyses, based on a two-step analysis strategy. For two failure time endpoints, two association measures are usually considered, Kendall's τ at individual level and adjusted R2 ([Formula: see text]) at trial level. However, [Formula: see text] is not always available mainly due to model estimation constraints. More recently, we proposed a one-step validation method based on a joint frailty model, with the aim of reducing estimation issues and estimation bias on the surrogacy evaluation criteria. The model was quite robust with satisfactory results obtained in simulation studies. This study seeks to popularize this new surrogate endpoints validation approach by making the method available in a user-friendly R package.METHODS:We provide numerous tools in the frailtypack R package, including more flexible functions, for the validation of candidate surrogate endpoints using data from multiple randomized clinical trials.RESULTS:We implemented the surrogate threshold effect which is used in combination with [Formula: see text] to make decisions concerning the validity of the surrogate endpoints. It is also possible thanks to frailtypack to predict the treatment effect on the true endpoint in a new trial using the treatment effect observed on the surrogate endpoint. The leave-one-out cross-validation is available for assessing the accuracy of the prediction using the joint surrogate model. Other tools include data generation, simulation study and graphic representations. We illustrate the use of the new functions with both real data and simulated data.CONCLUSION:This article proposes new attractive and well developed tools for validating failure time surrogate endpoints.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.title.enHow to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials
dc.typeArticle de revueen_US
dc.identifier.doi10.1371/journal.pone.0228098en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed31990928en_US
bordeaux.journalPLoS ONEen_US
bordeaux.pagee0228098en_US
bordeaux.volume15en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamBIOSTAT_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierinserm-02470898
hal.version1
hal.exportfalse
workflow.import.sourcehal
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PLoS%20ONE&rft.date=2020-01-28&rft.volume=15&rft.issue=1&rft.spage=e0228098&rft.epage=e0228098&rft.eissn=1932-6203&rft.issn=1932-6203&rft.au=SOFEU,%20Casimir&RONDEAU,%20Virginie&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée