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Abstract

Background and Objective

The use of valid surrogate endpoints can accelerate the development of phase III trials.

Numerous validation methods have been proposed with the most popular used in a context

of meta-analyses, based on a two-step analysis strategy. For two failure time endpoints, two

association measures are usually considered, Kendall’s τ at individual level and adjusted R2

(adjR2

trial) at trial level. However, adjR2

trial is not always available mainly due to model estima-

tion constraints. More recently, we proposed a one-step validation method based on a joint

frailty model, with the aim of reducing estimation issues and estimation bias on the surro-

gacy evaluation criteria. The model was quite robust with satisfactory results obtained in

simulation studies. This study seeks to popularize this new surrogate endpoints validation

approach by making the method available in a user-friendly R package.

Methods

We provide numerous tools in the frailtypack R package, including more flexible func-

tions, for the validation of candidate surrogate endpoints using data from multiple random-

ized clinical trials.

Results

We implemented the surrogate threshold effect which is used in combination with R2
trial to

make decisions concerning the validity of the surrogate endpoints. It is also possible thanks

to frailtypack to predict the treatment effect on the true endpoint in a new trial using the

treatment effect observed on the surrogate endpoint. The leave-one-out cross-validation is

available for assessing the accuracy of the prediction using the joint surrogate model. Other

tools include data generation, simulation study and graphic representations. We illustrate

the use of the new functions with both real data and simulated data.
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Conclusion

This article proposes new attractive and well developed tools for validating failure time surro-

gate endpoints.

Introduction

The choice of endpoint for assessing the efficacy of a new treatment is a key step in setting up

clinical trials. The use of the true endpoint increases the cost and duration of trials, and usually

induces an alteration of the treatment effects over time [1, 2]. For example, in oncology, overall

survival is a common clinical endpoint used during phase 3 trials to evaluate the clinical bene-

fit of new treatments. However, its use requires a sufficiently long follow-up time and a suffi-

ciently high sample size to show a significant difference in the treatment effect. To overcome

this problem, there has been a lot of interest over the last three decades in the use of alternative

criteria or surrogate endpoints to reduce the cost and shorten the duration of phase 3 trials [1–

4]. A good surrogate endpoint should predict the effect of treatment on the primary endpoint

[3].

Prentice (1989) [5] enumerated four criteria to be fulfilled by a putative surrogate endpoint.

The fourth criterion, often called Prentice’s criterion, stipulates that a surrogate endpoint must

capture the full treatment effect upon the true endpoint. The validation of Prentice’s criterion

based on a clinical trial was quite difficult, mainly due to a lack of power and the difficulty to

verify an assumption related to the relation between the treatment effects upon the true and

the surrogate endpoints. Therefore, to verify this assumption and obtain a consistent sample

size, Buyse et al. (2000) [6] like other authors [7] suggested basing validation on the meta-ana-

lytic (or multicenter) data. An important point when dealing with meta-analytic data is to take

heterogeneity between trials into account, for the purpose of prediction outside the scope of

the trial. Thus, a validated surrogate endpoint from meta-analytic data can be used to predict

the treatment effect upon the true endpoint in any trial.

In the meta-analysis framework, when both the surrogate and the true endpoints are failure

times, the current consensus is to base validation on the two-stage analysis strategy proposed

by Burzykowski et al. [8]. In the first stage, the association between the surrogate and true end-

points is evaluated using a bivariate copula model after taken the trial specific treatment effects

into account. In the second stage, the prediction of the treatment effect on the true endpoint

based on the observed treatment effect on the surrogate endpoint is assessed using the adjusted

coefficient of determination (adjR2

trial). adjR
2

trial is obtained from the regression model on the

estimates of the trial-specific treatment effects on both the surrogate and the true endpoints,

after adjusting on the estimation errors obtained in the first-stage model. The programs that

implement this method are available in the R package surrosurv [9] and the SAS macro

%COPULA [10]. However, the practical use of the two-stage copula model is often difficult,

mainly due to convergence issues or model estimation with the adjustment on the estimation

errors [11–13]. This drawback led to the development since Burzykowski et al. [8] of alterna-

tive approaches [11, 13–17].

Most of the novel methods, except that of Sofeu et al. [17] and Rotolo et al. [13], are based

on a two-stage validation strategy. Alonso and Molenberghs [14] proposed an information the-

ory approach, with a new definition and quantification of surrogacy at the individual level and

the trial level. The drawback of this method was the difficulty to provide a hard cut-off value in
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the information-theoretic measure, to discriminate between good and bad surrogates. Buyse et

et al. [15] suggested a two-stage validation approach in which individual-level surrogacy was

evaluated through the association between the trial-specific Kaplan-Meier estimates of the true

endpoint versus Kaplan-Meier estimates of the surrogate endpoint at a fixed time point. It is

also possible to base validation at the individual level on a bivariate copula model. In the trial-

level evaluation, a weighted linear regression on the treatment effects on the surrogate and

true endpoints was fitted and the coefficient of determination (R2) was used to quantify the

proportion of variance explained by the regressions. The available programs also make it possi-

ble to account for variability between trials using a robust sandwich estimator of Lin and Wei

[18].

For the approaches described in the previous paragraph, the R package surrogate [19],

the SAS macros %TWOSTAGECOX and %TWOSTAGEKM, and the SAS programs available

in Alonso et al. [10] were provided to carry out the evaluation exercise. Rotolo et al. [13]

proposed a one-step validation approach based on auxiliary mixed Poisson models, which

employs a bivariate survival model with an individual random effect shared between the two

endpoints and correlated treatment-by-trial interactions. Simulation results described by the

authors showed estimation biases on the surrogacy assessment measures, especially in the

event of a high association and when heterogeneity of baseline risk is taken into account. The

associated program was implemented in the R package surrosurv [9]. Renfro et al. [11]

suggested estimating the second-stage model in a Bayesian framework and the estimate of the

adjusted R2
trial was then based on the posterior distribution of the parameters of the adjusted

model. The corresponding trial-level surrogacy can be evaluated by adapting the WinBUGS
and R programs described in Bujkiewicz et al. [20]. This approach emphasizes a decrease in

estimation performance of the adjusted R2
trial when the data characteristics are close to reality

(for example, low trial size or number of trial).

More recently, we proposed a one-step validation approach based on a joint frailty model

[17] to reduce convergence issues and estimation biases on the surrogacy evaluation criteria.

In this novel method, we used a flexible form of the baseline hazard functions using splines to

obtain smooth risk functions, which represent incidence in epidemiology. Several integration

strategies were considered to compute integrals over the random effects, present in the mar-

ginal log-likelihood. The proposed joint surrogate model showed satisfactory results compared

to the existing two-step copula and one-step Poisson approaches.

We aim in this paper to popularize this new surrogate endpoints validation approach by

making the method available in a user-friendly R package (frailtypack). We have devel-

oped a prediction tool for the treatment effect on true endpoints based on the observed treat-

ment effect on surrogate endpoints. Interpretation of R2
trial and decision-making about the

validity of the candidate surrogate endpoint are possible thanks to the classification suggested

by the Institute for Quality and Efficiency in Health Care (IQWiG) [21], and surrogate thresh-

old effect (STE) introduced by Burzykowski and Buyse [22]. Other tools are for displaying the

basic risks and survival functions, for model assessment, and for data generation based on the

joint surrogate model. Another attractive goal of this article is to provide a tool to perform sim-

ulation studies.

frailtypack is an R package that fits a variety of frailty models containing one or more

random effects, or shared frailty. It includes a shared frailty model, a joint frailty model for

recurrent events and terminal event, others forms of advanced joint frailty models [23], and

now a joint frailty model for evaluating surrogate endpoints in meta-analyses of randomized

controlled trials with failure-time endpoints. In this paper we focus on a particular subset of

features applicable for evaluating surrogate endpoints.

Surrogate endpoint evaluation with the frailtypack R-package
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The rest of this paper is organized as follows. In the next section, we summarize the joint

surrogate model with the estimation methods and the surrogacy evaluation criteria. We end it

with the definition of STE. In the third section, we introduce the functions developed in the R-

package frailtypack to estimate the parameters of the joint surrogate model, as well as the

new functions related to the surrogacy evaluation. In the fourth section, we illustrate the new

functions using generated data and individual patient data from the Ovarian Cancer Meta-

Analysis Project [24]. Finally, we present a concluding discussion.

Methodology

In this section, we present the one-step joint surrogate model for evaluating a candidate surro-

gate endpoint [17]. The model estimation and the surrogacy evaluation criteria are also dis-

cussed here.

Model and estimation

Joint surrogate model definition. Let us consider data from a meta-analysis (or a multi-

center study); let Sij and Tij be two time-to-event endpoints associated respectively with the

surrogate endpoint and the true endpoint such that Sij< Tij or Sij = Tij in the event of right

censoring. We denote Zij1 the treatment indicator. Sij can be the progression-free survival time

(defined as the time from randomization to clinical progression of the disease or death) in

patients treated for cancer and Tij the overall survival (defined as the time from randomization

to death from any cause). For the jth subject (j = 1, . . ., ni) of the ith trial (i = 1, . . ., G), the joint

surrogate model is defined as follows [17]:

(
lS;ijðtjoij; ui; vSi ;Zij1Þ ¼ l0SðtÞexpðoij þ ui þ vSiZij1 þ bSZij1Þ

lT;ijðtjoij; ui; vTi ;Zij1Þ ¼ l0TðtÞexpðzoij þ aui þ vTiZij1 þ bTZij1Þ
ð1Þ

where,

oij � Nð0; yÞ; ui � Nð0; gÞ;oij ? ui; ui ? vSi ; ui ? vTi

and

vSi

vTi

0

@

1

A � MVN 0;Svð Þ;with Sv ¼

s2
vS

svST

svST
s2
vT

0

@

1

A

In this model, λ0S(t) is the baseline hazard function associated with the surrogate endpoint

and βS the fixed treatment effect (or log-hazard ratio); λ0T(t) is the baseline hazard function

associated with the true endpoint and βT the fixed treatment effect. ωij is a shared individual-

level frailty that serve to take into account the heterogeneity in the data at the individual level

due to unobserved covariates; ui is a shared frailty effect associated with the baseline hazard

function that serve to take into account the heterogeneity between trials of the baseline haz-

ard function, associated with the fact that we have several trials in this meta-analytical design.

Coefficients z and α distinguish both individual and trial-level heterogeneities between the

surrogate and the true endpoint. vSi and vTi are two correlated random effects treatment-by-

trial interactions.

Estimation. Marginal log-likelihood Let δij and d
�

ij be the progression and the death indi-

cators. Sofeu et al. [17] showed that the marginal log-likelihood from model (1) includes two
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integration levels and is defined as follows:

lðFÞ ¼ log
YG

i¼1

Z

U

Yni

j¼1

Z

oij

l
dij
Sij � SðSijÞ � l

d�ij
Tij � SðTijÞf ðoijÞdoij

" #

f ðvSi ; vTiÞf ðuiÞdU

( )

ð2Þ

where F ¼ ðŝ2
vS
; ŝ2

vT
; ŝvST

; ŷ; ĝ; l̂0Tð:Þ; l̂0Sð:Þ; b̂S; b̂TÞ is the vector of the model parameters and

U ¼ ðui; vSi ; vTiÞ is the vector of trial random effects. l̂0Sð:Þ and l̂0Tð:Þ are estimates for the

baseline hazard functions associated with the surrogate endpoint and the true endpoint.

Parameters estimation The model parameters F were estimated by a semi-parametric

approach using the maximization of the penalized likelihood. We used the robust Marquardt

algorithm [25], which is a mixture between the newton-Raphson and the steepest descent algo-

rithm. For more details on the penalized likelihood, see the S1A Appendix in S1 Appendix or

[26]. In order to estimate the integrals present in (2), different numerical integration strategies

were considered, including a mixture of the Monte-Carlo integration with the Pseudo-adap-

tive or the classical Gauss-Hermite quadrature.

Surrogacy evaluation criteria and interpretation

We have already proposed new definitions of Kendall’s τ and coefficient of determination as

individual-level and trial-level association measures to evaluate a candidate surrogate endpoint

[17]. We recall in the S1B and S1C Appendix in S1 Appendix the formulation of these associa-

tion measures.

Prediction and surrogate threshold effect (STE)

Gail et al. [27] underlined some issues in using R2
trial for assessing a candidate surrogate end-

point. The first problem is the difficulty in interpreting R2
trial. For perfect prediction of the

treatment effect on the true endpoints, R2
trial must be equal to 1. However, such a situation is

impossible in practice. Therefore, for R2
trial 6¼ 1, it is not clear what threshold would be sufficient

for a valid surrogate endpoint. Another problem raised by Gail et al. [27] is that, unless R2
trial =

1, the variance of the prediction of the treatment effect on the true endpoint in a new trial can-

not be reduced to 0, even in the absence of any estimation error in the trial. Furthermore, if

this effect is estimated directly from data on the true endpoint, this estimation error can theo-

retically be made arbitrarily close to 0 by increasing the trial’s sample size. To address these

issues, Burzykowski and Buyse [22] proposed a new concept, the surrogate threshold effect.

One of the most interesting features of STE is its natural interpretation from a clinical point

of view. STE represents the minimum treatment effect on the surrogate necessary to predict a

non-zero (significant) effect on the true endpoint. We show in S1D Appendix in S1 Appendix

that STE, based on model (1), can be obtained by solving one of the following quadratic equa-

tions:

EðbT þ vT0jbS0
; WÞ � z1� ðg=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbT þ vT0jbS0

; WÞ
q

¼ 0 ð3Þ

for the lower prediction limit function of the treatment effect on the true endpoint based on

the observed treatment effect on the surrogate endpoint, or

EðbT þ vT0jbS0
; WÞ þ z1� ðg=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbT þ vT0jbS0

; WÞ
q

¼ 0; ð4Þ

for the upper prediction limit function. Elements in Eqs (3) and (4) are defined in S1D Appen-

dix in S1 Appendix.
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Readers can refer to S1E Appendix in S1 Appendix for the interpretation of STE, in combi-

nation with R2

trial and decision-making as suggested by the German Institute for Quality and

Efficiency in Health Care [21]

Available functions in the frailtypack R package for surrogacy

evaluation

In this section, we introduce the new R functions, used to estimate model (1). Functions for

data generation and simulation studies are also described.

Estimation of joint surrogate model and surrogacy evaluation

The jointSurroPenal() function. Model (1) can be fitted using the jointSur-
roPenal() function defined as follows:

jointSurroPenal(data, maxit = 40, indicator.zeta = 1, indica-
tor.alpha = 1,

frail.base = 1, n.knots = 6, LIMlogl = 0.001, LIMparam = 0.001,
LIMderiv = 0.001, nb.mc = 300, nb.gh = 32, nb.gh2 = 20,

adaptatif = 0,
int.method = 2, nb.iterPGH = 5, nb.MC.kendall = 10000,
nboot.kendall = 1000, true.init.val = 0, theta.init = 1,

sigma.ss.init = 0.5, scale = 1, sigma.tt.init = 0.5, sigma.st.
init = 0.48,

gamma.init = 0.5, alpha.init = 1, zeta.init = 1, betas.
init = 0.5,

betat.init = 0.5, random.generator = 1, kappa.use = 4,
random = 0,

seed = 0, random.nb.sim = 0, init.kappa = NULL, nb.decimal = 4,
print.times = TRUE, print.iter = FALSE)

The mandatory argument of this function is data, the dataset to use for the estimations.

Argument data refers to a dataframe including at least 7 variables: patientID, trialID,

timeS, statusS, timeT, status and trt. The description of these variables, like other

arguments of the function, can be found in S2A Appendix in S2 Appendix, or via the R com-

mand help(jointSurroPenal). The rest of the arguments can be set to their default values. In

addition, details on the required arguments/values are given in the illustration section.

The jointSurroPenal object. The function jointSurroPenal() returns an

object of class ‘jointSurroPenal’, if the joint surrogate model has been estimated. We

describe in S2A Appendix in S2 Appendix some of the relevant returned values, as well as the

functions which can be applied to this object. A full description can be found by displaying the

help on the function jointSurroPenal().

Data generation using the R function jointSurrSimul()
For data generation purposes, we implemented the algorithm described in Sofeu et al. [17] in

the R function jointSurrSimul(). The generation procedure is based on model (1). A

variant of this algorithm is to base generation on a model that includes just a shared frailty

term at the individual level as described by Rondeau et al. [28]. This function is defined as

follows:

jointSurrSimul(n.obs = 600, n.trial = 30, cens.adm = 549.24,
alpha = 1.5,

Surrogate endpoint evaluation with the frailtypack R-package
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theta = 3.5, gamma = 2.5, zeta = 1, sigma.s = 0.7, sigma.
t = 0.7,

rsqrt = 0.8, betas = -1.25, betat = -1.25, frailt.base = 1,
lambda.S = 1.8, nu.S = 0.0045, lambda.T = 3, nu.T = 0.0025,

ver = 1,
typeOf = 1, equi.subj.trial = 1, equi.subj.trt = 1,
prop.subj.trial = NULL, full.data = 0, prop.subj.trt = NULL,
random.generator = 1, random = 0, random.nb.sim = 0, seed = 0,
nb.reject.data = 0)

Arguments of the jointSurrSimul() function are accessible using the R command

help(jointSurrSimul). An exhaustive description is presented in S2B Appendix in S2

Appendix.

Simulation studies based on the joint surrogate model

It is possible to perform simulation studies based on model (1), using the function join-
tSurroPenalSimul() defines as follows:

jointSurroPenalSimul(nb.dataset = 1, nbSubSimul = 1000,
ntrialSimul = 30,

equi.subj.trial = 1, prop.subj.trial = NULL, equi.subj.trt = 1,
prop.subj.trt = NULL, theta2 = 3.5, zeta = 1, gamma.ui = 2.5,
alpha.ui = 1, sigma.s = 0.7, sigma.t = 0.7, R2 = 0.81, betas =

-1.25,
betat = -1.25, lambdas = 1.8, nus = 0.0045, lambdat = 3,

nut = 0.0025,
time.cens = 549, indicator.zeta = 1, indicator.alpha = 1,

frail.base = 1,
init.kappa = NULL, n.knots = 6, maxit = 40, LIMparam = 0.001,
LIMlogl = 0.001, LIMderiv = 0.001, int.method = 2,

adaptatif = 0,
nb.iterPGH = 5, nb.mc = 300, nb.gh = 32, nb.gh2 = 20,
nb.MC.kendall = 10000, nboot.kendall = 1000, true.init.val = 0,
theta.init = 1, zeta.init = 1, gamma.init = 0.5, alpha.

init = 1,
sigma.ss.init = 0.5, sigma.tt.init = 0.5, sigma.st.init = 0.48,
betas.init = 0.5, betat.init = 0.5, kappa.use = 4,
random.generator = 1, random = 0, random.nb.sim = 0, seed = 0,
nb.decimal = 4, print.times = TRUE, print.iter = FALSE)

Most of the arguments in this function are mandatory for the user, taking into account the

simulation design. S2B Appendix in S2 Appendix describes all the arguments, as well as the

elements of the ‘jointSurroPenalSimul’ object.

Kendall’s τ estimation using the function jointSurroTKendall
The function jointSurroTKendall() is used to estimate Kendall’s τ described in S1B

Appendix in S1 Appendix, based on the estimates from the model (1). It is possible to perform

the numerical integration with the Monte-Carlo or the Gauss-Hermite quadrature method.

The jointSurroTKendall() function is defined as shown below, with arguments

described in S2D Appendix in S2 Appendix. This function returns the estimated value of Ken-

dall’s τ

Surrogate endpoint evaluation with the frailtypack R-package
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jointSurroTKendall(object = NULL, theta, gamma, alpha = 1,
zeta = 1,

int.method = 0, sigma.v = matrix(rep(0, 4), 2, 2), nb.gh = 32,
nb.MC.kendall = 10000, random.generator = 1, random.nb.sim = 0,
random = 0, seed = 0, ui = 1)

Illustrations

Computational details and package installation

Estimations in the proposed functions are based on Fortran programs, with parallel com-

puting using OpenMP, to speed up calculations. Thus, we used R as an interface between the

user and the Fortran compiler. The stable version of frailtypack is available on the

Comprehensive R Archive Network (CRAN) [29]. Furthermore, the ongoing version can be

found on GitHub at https://github.com/socale/frailtypack. A list of other models implemented

in frailtypack [23] can be found in S1 Fig. The results in this paper were obtained using

R version 3.5.2 and the frailtypack package version 3.0.3, using a processor Intel
(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz including 40 cores and a Read Only

Memory (RAM) of 378 Gb. A standard laptop and a desktop PC under recent versions of R
can be used to fit the model. The results will be the same, but with longer computing time. For

example, using a standard desktop PC in the application, the fit took around 1 hours compared

to 9 min with a server including 40 cores and a RAM of 378 Go.

The frailtypack package can be installed in any R session using the install.
packages command as follows:

Installation via GitHub is possible thanks to the devtools package. All dependencies

required by frailtypack must be installed first. The installation commands are:

Finally, frailtypack must be loaded using the command:

Data source

We illustrate the use of the developed functions with the individual patient data of the Ovarian

Cancer Meta-Analysis Project [24] and a generated dataset based on model (1). We also

describe the simulation studies at the end of this section.

Description of dataOvarian dataset. The dataOvarian dataset combines data that

were collected in four double-blind randomized clinical trials in advanced ovarian cancer. In

install.packages (“frailtypack”, dependencies = T, type =
“source”,

repos = “https://cloud.r-project.org”)

install.packages (c(“survC1”, “doBy”,“statmod”), repos =
“https://cloud.r-project.org”)

devtools::install github (“socale/frailtypack”, ref = “sur-
rogacy submetted 3-0-3”)

library (frailtypack)
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the first two trials of this study, data were available on the centers in which patients were

treated, and each of the two trials were considered as a homogeneous group according to the

investigators. Finally, the statistical unit in the first two trials was center and it was trial for the

last two trials. Therefore, a total of 50 units were available for surrogacy evaluation. The objec-

tive in these studies was to examine the efficacy of cyclophosphamide plus cisplatin (CP) ver-

sus cyclophosphamide plus adriamycin plus cisplatin (CAP) to treat advanced ovarian cancer.

The candidate surrogate endpoint S was progression-free survival time (PFS), defined as the

time (in years) from randomization to clinical progression of the disease or death. The true

endpoint T was survival time, defined as the time (in years) from randomization to death from

any cause. The dataset includes 1192 subjects with 82% of PFS-related events at a median sur-

vival time of 78.7 days [Interquartile range (IQR): 36.6–202.5], and 79.8% of deaths at a

median survival time of 111.4 days [IQR: 56.0–275.9]. Data can be loaded as follows:

By displaying the structure of this dataset, we can find the same structure as in the function

jointSurroPenal(), with 7 variables. The column trialID here refers to the analysis

unit.

Generated dataset. In the example below, we generate a meta-analysis including 600
subjects in 30 trials. Arguments α, θ, z and γ are fixed to obtain a Kendall’s τ of 0.61, which

is obtained using the jointSurroTKendall() function as follows:

jointSurroTKendall (theta = 3.5, gamma = 2.5, alpha = 1.5,
zeta = 1)

[1] 0.6062975
Otherwise, the trial level surrogacy, R2

trial is fixed to 0.8. This could correspond to simula-

tion design including high trial level and high individual level surrogacy. The treatment effects

βS and βT are set to -1.25 to consider protective effects both on the surrogate endpoint and

the true endpoint. The code below is used to generate the dataset using the jointSurrSi-
mul() function introduce d previously, and display the head.

data (“dataOvarian”, package = “frailtypack”)

str (dataOvarian)

‘data.frame’: 1192 obs. of 7 variables:

$ patientID: int 1 2 3 4 5 6 7 8 9 10 . . .

$ trialID : num 2 2 2 2 2 2 2 2 2 2 . . .

$ trt : int 0 0 0 1 0 1 0 0 1 1 . . .

$ timeS : num 0.1052 0.8952 0.079 1.7393 0.0913 . . .

$ statusS : int 1 1 1 0 1 1 1 1 1 1 . . .

$ timeT : num 0.186 1.409 0.126 1.739 0.127 . . .

$ statusT : int 1 1 1 0 1 1 1 1 1 1 . . .

data.sim <- jointSurrSimul(n.obs = 600, n.trial = 30,
alpha = 1.5,

theta = 3.5, gamma = 2.5, zeta = 1, sigma.s = 0.7, sigma.
t = 0.7,
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Surrogacy evaluation

In this section, we use the dataset previously described to illustrate the evaluation of the surro-

gate endpoints based on the one-step joint surrogate model (1). Different arguments of the

associated functions will be explored as the returned values.

Model estimation based on the advanced ovarian cancer meta-analysis dataset. From a

practical point of view, the most important arguments for using the jointSurroPenal()
function beyond the standard argument (data) concern the following: the parametrization

of the model (with arguments indicator.zeta and indicator.alpha), the method

of integration and associated arguments (int.method, n.knots, nb.mc, nb.gh, nb.
gh2, adaptatif), the smoothing parameters (init.kappa and kappa.use) and

the scale of survival times (scale). Although optional, all these arguments can be used to

manage the convergence issues. The choice of the values to assign to these arguments can

be based on the convergence of model. When the convergence issues are fixed, users can

implement the likelihood cross-validation criteria to evaluate the goodness of fit of different

models, as shown later in this section. In the first step, users can try the model with the default

values.

In the event of convergence issues, we recommend the following strategy: Changing the

number of samples for Monte-Carlo integration (nb.mc) by choosing a numerical value

between 100 and 300; varying the number of nodes for the Gaussian-Hermite quadrature

integration (nb.gh and nb.gh2) by choosing the values between 15, 20 and 32; varying

the number of nodes for spline (n.knots) by a numerical value between 6 and 10; providing

new values for the smoothing parameters (init.kappa). Users can also set the arguments α
or z to 1 (indicator.zeta = 1 or indicator.alpha = 1) to avoid estimating these

parameters. We also recommend changing the integration method with the arguments int.
method and adaptatif. For example, by using adaptatif = 1 for integration over the

random effects at the individual level, one could use the pseudo-adaptive quadrature Gauss-

ian-Hermite integration instead of the classical quadrature Gaussian-Hermite method. By

changing the scale of the survival times (argument scale) and considering years instead of

days, it is possible to solve some of the numerical issues.

rsqrt = 0.8, betas = −1.25, betat = −1.25, random.
generator = 1,

seed = 0, nb.reject.data = 0)

head (data.sim)

patientID trialID trt timeS statusS timeT statusT

1 1 1 0 8.243721 1 38.41068 1

2 2 1 1 446.169009 0 446.16901 1

3 3 1 1 110.418853 0 110.41885 1

4 4 1 1 70.262075 0 70.26207 1

5 5 1 1 382.973632 1 549.24000 0

6 6 1 0 61.148254 1 230.24486 1
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Using the default values based on the advanced ovarian cancer dataset, the model did not

converge. By changing the value of some arguments, we obtained the following set of argu-

ments/values which allowed convergence:

In this model, we fix the coefficient α to 1, and thereby do not estimate it. We consider 8
spline nodes for the baseline hazards. By default, we use the fixed initial values and obtain

smoothing parameters by cross-validation on reduced models. We approximate integrals

over the random effects using a combination of Monte-Carlo with 200 samples and classical

Gauss-Hermite quadrature with 32 nodes. To solve numerical problems during estimation,

we re-scale the survival times by converting days to years. This parametrization of the model

provided the results described in the next section.

Summary of results. By applying the function summary() on the object joint.
surro.ovar, the following results are displayed in the event of convergence:

joint.surro.ovar <- jointSurroPenal(data = dataOvarian, n.
knots = 8,

indicator.alpha = 0, nb.mc = 200, scale = 1/365)

summary(joint.surro.ovar)

Estimates for variance parameters of random effects

Estimate Std Error z P

theta 6.848 0.3786 18.086 < e-10 ���

zeta 1.792 0.0714 25.095 < e-10 ���

gamma 0.045 0.0774 0.576 0.5645

sigma2_S 0.610 0.3733 1.633 0.1025

sigma2_T 1.830 1.0202 1.794 0.07287 .

sigma_ST 1.056 0.6067 1.741 0.0817 .

Estimates for fixed treatment effects

Estimate Std Error z P

beta_S -0.596 0.2298 -2.595 0.009463 ��

beta_T -0.841 0.3936 -2.136 0.03264 �

---

Signif. codes: 0 ‘���’ 0.001 ‘��’ 0.01 ‘�’ 0.05 ‘.’ 0.1 ‘’ 1

hazard ratios (HR) and confidence intervals for fixed treatment effects

exp(coef) Inf.95.CI Sup.95.CI

beta_S 0.551 0.351 0.864

beta_T 0.431 0.199 0.933

Surrogate endpoint evaluation with the frailtypack R-package

PLOS ONE | https://doi.org/10.1371/journal.pone.0228098 January 28, 2020 11 / 25

https://doi.org/10.1371/journal.pone.0228098


The results are organized in five parts. We first present estimates for the variance parame-

ters of the random effects and the coefficients z and α (if applicable). This includes standard

errors, z-statistics and p value of the Wald test. Results suggest a strong heterogeneity at the

individual level, observed on the endpoints (θ = 6.848 compared to 0), and more pronounced

on the true endpoint (z = 1.792 compared to 1). The estimated value of γ suggests homoge-

neous baseline hazards across trials (γ = 0.045, p> 0.5), both on the surrogate endpoint and

on the true endpoint. This could explain the identification problem encountered by consider-

ing the coefficient α in the model. The parameters s2
S , s

2
T , σST suggest the presence of heteroge-

neity at trial level interacting with the treatment (p< = 0.10). The next two parts of the results

show estimates for the fixed treatment effects βS given the random effects (ui, vSi) and βT given

(ui, vTi), with the associated hazard ratios and confidence intervals. These parameters can be

interpreted as usual, but taking adjustment on the random effects into account. We observed

significant protective effects of the treatment on the surrogate endpoint and on the true end-

point (p< 0.05).

The fourth part of the results describes the surrogacy evaluation criterion. Kendall’s τ, R2
trial

and R2
trial;boot (obtained using parametric bootstrap) are available with the associated confidence

intervals as is the standard error of R2
trial obtained by the Delta method [30]. Arguments int.

method.kt and nb.gh of the summary() function can be used to choose between the

Monte-Carlo and the Gauss-Hermite quadrature which integration method is to be used to

estimate Kendall’s τ, and set the number of quadrature nodes when appropriate. Using at least

500 samples for the Monte-carlo integration and at least 15 quadrature nodes the two inte-

gration methods generally yield the same results for Kendall’s τ.

These results suggest high association measurement at the individual level (Kendall’s τ =

0.68 [0.66–0.70]), and high correlation strength at the trial level (R2
trial;boot ¼ 0:98 [0.90–1.00])

Surrogacy evaluation criterion

Level Estimate Std Error Inf.95.CI Sup.95.CI Strength

Ktau Individual 0.683 -- 0.664 0.696

R2trial Trial 1.000 0.001 0.998 1.002 High

R2.boot Trial 0.982 -- 0.896 1.000 High

---

Association strength: <= 0.49 ‘Low’;]0.49-0.72[‘Medium’; >= 0.72 ‘High’

---

Surrogate threshold effect (STE): -0.273 (HR = 0.761)

Convergence parameters

Penalized marginal log-likelihood = -10892.611

Number of iterations = 29

LCV = the approximate likelihood cross-validation criterion

in semi-parametrical case = 9.162

Convergence criteria:

parameters = 9.573e-06 likelihood = 8.426e-08 gradient = 4.507e-08
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between the surrogate endpoint and the true endpoints, according to the classification of the

surrogacy criteria proposed by the Institute of Quality and Efficiency in Health Care [31, 32].

Given that Kendall’s τ is adjusted on random effects at the individual level [17], it is quite

difficult to observe a value > 0.7 compared to unadjusted ones from the two-step copula

approach of Burzykowski et al. [8]. A very high value suggests extreme values for the

parameters α, z, θ or γ, although such values are difficult to observe in practice. Therefore, a

value around 0.65 can be considered as sufficient for validating surrogacy at the individual

level.

We also compute and display the surrogate threshold effect with the associated hazard risk.

We obtain an acceptable value of STE (- 0.273, HR = 0.761), which illustrates the high validity

of the surrogate. As mentioned by [22], unrealistically large/small values of STE (e.g., corre-

sponding to a HR of less than 0.5) would indicate too wide prediction limits and, consequently,

poor validity of the surrogate. Therefore, as observed previously [8], PFS can be considered

as a valid surrogate endpoint for OS when evaluating new treatments for advanced ovarian

cancer.

The last part of the results describes the convergence parameters.

Model estimation based on generated dataset. Here, we estimate two joint surrogate

models for the purpose of model comparison, based on the generated dataset data.sim.

Integrals are approximated using a combination of Monte Carlo and classical Gauss-Hermite

in the first model and a combination of Monte Carlo and Pseudo-adaptive Gauss-Hermite

integration in the second one. The codes for both models are described as follows:

A relevant question in this case might be how to compare different models, or how to

choose the optimal value of the number of knots for spline, the number of quadrature points,

the number of samples for Monte-Carlo, or the optimal integration method. We propose in

this package to base comparison on the approximated likelihood cross-validation criterion.

The lower the value obtained for this parameter, the better the associated model will be.

Choice of model based on LCV. The LCV for models joint.surro.sim.MCGH and

joint.surro.sim.MCPGH are respectively

As expected [17], the two observed values of LCV are quite similar. The summary() func-

tion applied to previous objects give results shown below. When comparing the two models,

estimates of most coefficients and standard errors showed some differences. However this obser-

vation does not alter conclusions on the surrogacy validity captured by Kendall’s τ and R2
trial.

joint.surro.sim.MCGH <- jointSurroPenal(data = data.sim,
int.method = 2,

nb.mc = 300, nb.gh = 20)

joint.surro.sim.MCPGH <- jointSurroPenal(data = data.sim,
int.method = 2,

nb.mc = 300, nb.gh = 20, adaptatif = 1)

joint.surro.sim.MCGH$LCV

[1] 8.29982

joint.surro.sim.MCPGH$LCV

[1] 8.31713
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summary(joint.surro.sim.MCGH)

Estimates for variance parameters of random effects

Estimate Std Error z P

theta 3.450 0.4928 7.001 < e-10 ���

zeta 1.506 0.2364 6.369 1.899e-10 ���

gamma 1.881 0.5602 3.358 0.0007853 ���

alpha 0.916 0.1443 6.348 2.183e-10 ���

sigma2_S 0.703 0.4289 1.640 0.1011

sigma2_T 1.096 0.6147 1.783 0.07451 .

sigma_ST 0.442 0.3974 1.113 0.2657

Estimates for fixed treatment effects

Estimate Std Error z P

beta_S -2.046 0.2667 -7.673 < e-10 ���

beta_T -1.844 0.3562 -5.177 2.25e-07 ���

---

Signif. codes: 0 ‘���’ 0.001 ‘��’ 0.01 ‘�’ 0.05 ‘.’ 0.1 ‘ ’ 1

hazard ratios (HR) and confidence intervals for fixed treatment effects

exp(coef) Inf.95.CI Sup.95.CI

beta_S 0.129 0.077 0.218

beta_T 0.158 0.079 0.318

Surrogacy evaluation criterion

Level Estimate Std Error Inf.95.CI Sup.95.CI Strength

Ktau Individual 0.596 -- 0.542 0.625

R2trial Trial 0.254 0.276 -0.288 0.796 Low

R2.boot Trial 0.290 -- 0.002 0.767 Low

---

Association strength: <= 0.49 ‘Low’;]0.49-0.72[‘Medium’; >= 0.72 ‘High’

---

Surrogate threshold effect (STE): -8.523 (HR = 0)

Convergence parameters

Penalized marginal log-likelihood = -4957.842

Number of iterations = 14

LCV = approximate likelihood cross-validation criterion

in the semi-parametrical case = 8.3
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Convergence criteria:

parameters = 3.833e-05 likelihood = 0.0002426 gradient = 1.137e-06

summary(joint.surro.sim.MCPGH)

Estimates for variance parameters of random effects

Estimate Std Error z P

theta 2.640 0.4295 6.148 7.854e-10 ���

zeta 2.277 0.4010 5.679 1.356e-08 ���

gamma 1.355 0.4174 3.246 0.00117 ��

alpha 1.135 0.2285 4.965 6.855e-07 ���

sigma2_S 0.593 0.3471 1.709 0.0875 .

sigma2_T 0.664 0.5771 1.151 0.2498

sigma_ST 0.380 0.3219 1.181 0.2376

Estimates for fixed treatment effects

Estimate Std Error z P

beta_S -1.643 0.2277 -7.216 < e-10 ���

beta_T -1.640 0.3573 -4.589 4.463e-06 ���

---

Signif. codes: 0 ‘���’ 0.001 ‘��’ 0.01 ‘�’ 0.05 ‘.’ 0.1 ‘ ’ 1

hazard ratios (HR) and confidence intervals for fixed treatment effects

exp(coef) Inf.95.CI Sup.95.CI

beta_S 0.193 0.124 0.302

beta_T 0.194 0.096 0.391

Surrogacy evaluation criterion

Level Estimate Std Error Inf.95.CI Sup.95.CI Strength

Ktau Individual 0.577 -- 0.522 0.607

R2trial Trial 0.367 0.358 -0.334 1.068 Low

R2.boot Trial 0.407 -- 0.007 0.964 Low

---

Association strength: <= 0.49 ‘Low’;]0.49-0.72[‘Medium’; >= 0.72 ‘High’

---

Surrogate threshold effect (STE): -4.922 (HR = 0.007)

Convergence parameters

Surrogate endpoint evaluation with the frailtypack R-package

PLOS ONE | https://doi.org/10.1371/journal.pone.0228098 January 28, 2020 15 / 25

https://doi.org/10.1371/journal.pone.0228098


Graphical representation of baseline hazard and survival functions. By using the

generic function plot(), it is possible to plot the baseline hazard and survival functions for

both surrogate and true endpoints. The definition of this function is shown below, and the

associated arguments are described in S2E Appendix in S2 Appendix.

plot(x, endpoint = 2, scale = 1, type.plot = “Hazard”,
xmin = 0,

conf.bands = TRUE, xmax = NULL, ylim = c(0, 1), Xlab =
“Time”,

pos.legend = “topright”, main, cex.legend = 0.7,
Ylab = “Baseline hazard function”)

Fig 1 represents the baseline survival and hazard functions for model, for both the surrogate

and the true endpoints using the advanced ovarian cancer meta-analysis dataset. We limit sur-

vival times to 8 months since after this threshold, the estimated survival probabilities are

almost equal to 0. The code below produces the plots given in Fig 1.

Fig 2 shows another representation of the baseline survival and hazard functions for the

surrogate and the true endpoints. We use the object joint.surro.sim.MCPGH for this

purpose, which is based on the generated data.

The following code is used to produces Fig 2:

Penalized marginal log-likelihood = -4968.465

Number of iterations = 20

LCV = the approximate likelihood cross-validation criterion

in the semi-parametrical case = 8.317

Convergence criteria:

parameters = 5.962e-05 likelihood = 0.0004484 gradient = 2.465e-06

par(mfrow = c(2, 1))

plot(joint.surro.ovar,type.plot = “Su”, xmax = 8, Xlab =
“Time (in months)”,

scale = 12)

plot(joint.surro.ovar, xmax = 8, ylim = c(0, 0.2), Xlab =
“Time (in months)”,

scale = 12, pos.legend = “topleft”)

par(mfrow = c(2, 2))

plot(joint.surro.sim.MCPGH, type.plot = “Su”, endpoint = 0,
scale = 1/365,

Xlab = “Time (in years)”)

plot(joint.surro.sim.MCPGH, type.plot = “Su”, endpoint = 1,
scale = 1/365
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Fig 1. Baseline hazard and survival functions for surrogate endpoint and true endpoint truncated at 8 months using the advanced

ovarian cancer meta-analysis dataset.

https://doi.org/10.1371/journal.pone.0228098.g001

,pos.legend = “bottomleft”, Xlab = “Time (in years)”)

plot(joint.surro.sim.MCPGH, type.plot = “Ha”, endpoint = 0,
scale = 1/365

,ylim = c(0, 0.08),

Xlab = “Time (in years)”)

plot(joint.surro.sim.MCPGH, type.plot = “Ha”, endpoint = 1,
scale = 1/365

,ylim = c(0, 0.08),

Xlab = “Time (in years)”)
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Model evaluation and prediction

To assess the accuracy of the prediction using estimates from model (1), the leave-one-out

cross validation criteria (loocv) described in S2F Appendix in S2 Appendix can be performed

as follows:

Fig 2. Baseline hazard and survival functions for surrogate endpoint and true endpoint, using simulated meta-analysis of 600

subjects and 30 trials.

https://doi.org/10.1371/journal.pone.0228098.g002

dloocv <- loocv(object = joint.surro.sim.MCGH, unusedtrial =
26,

var.used = “error.estim”)
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We found the following result:

dloocv$result

trialID ntrial beta.S beta.T beta.T.i Inf.95.CI Sup.95.CI

1 1 20 -2.145 -0.582 -2.038 -2.663 -1.412

2 2 20 -1.480 -0.799 -1.464 -2.135 -0.793 �

3 3 20 -0.285 -0.422 -0.195 -1.801 1.411 �

4 4 20 0.307 0.487 -0.248 -2.347 1.852 �

5 5 20 -1.087 -1.230 -0.983 -2.007 0.041 �

6 6 20 -21.305 -1.496 -13.951 -32.636 4.733 �

7 7 20 -0.796 -1.943 -0.687 -1.889 0.515

8 8 20 -1.578 -1.302 -1.545 -2.167 -0.923 �

9 9 20 -1.909 -1.402 -1.736 -2.241 -1.230 �

10 10 20 -1.752 -0.053 -1.505 -2.174 -0.836

11 11 20 -21.304 -0.342 -16.325 -35.269 2.619 �

12 12 20 -2.766 -20.920 -2.236 -3.201 -1.271

13 13 20 -0.474 -1.025 -0.835 -2.289 0.618 �

14 14 20 0.056 -0.148 -0.561 -2.603 1.481 �

15 15 20 -1.337 -1.154 -1.250 -2.218 -0.282 �

16 16 20 -0.191 -0.291 -0.125 -1.833 1.582 �

17 17 20 0.264 0.161 -0.540 -3.006 1.926 �

18 18 20 -2.589 -0.657 -2.197 -2.968 -1.426

19 19 20 -1.795 -1.654 -1.562 -2.263 -0.861 �

20 20 20 -0.630 1.599 -1.128 -2.451 0.195

21 21 20 -0.593 -0.510 -0.602 -1.988 0.785 �

22 22 20 -0.682 -1.645 -0.555 -1.827 0.716 �

23 23 20 -0.787 -0.179 -0.850 -2.061 0.362 �

24 24 20 -3.019 -2.735 -2.227 -3.504 -0.949 �

25 25 20 -2.393 -1.577 -2.099 -2.879 -1.319 �

26 27 20 -1.640 -1.063 -1.630 -2.248 -1.012 �

27 28 20 -1.386 -1.672 -1.220 -2.057 -0.383 �

28 29 20 -0.207 -0.722 -0.535 -2.220 1.150 �

29 30 20 0.299 0.185 -0.377 -3.215 2.461 �
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The returned object, of class jointSurroPenalloocv includes for each trial the

number of included subjects (ntrial), the observed treatment effect on the surrogate end-

point (beta.S), the observed treatment effect on the true endpoint (beta.T) and the pre-

dicted treatment effect on the true endpoint (beta.T.i) with the associated prediction

interval (Inf.95.CI, Sup.95.CI). If the observed treatment effect on the true end-

point is included into the prediction interval, the last column contains “�”, indicating a

good prediction.

Simulation studies

In this section, we show an example of simulation studies in the frailtypack package,

based on model (1).

Estimations. Using the function jointSurroPenalSimul() simulation studies can

be performed as follows:

This function serves to perform simulation studies with 10 meta-analyses, each study

including 600 subjects and 30 trials. By default, each generated meta-analysis includes the

same proportion of subjects per trial and the same proportion of treated subjects per trial. In

the event of an identification problem, the model is re-estimated using 32 quadrature nodes.

All unused simulation parameters are set to the initial value, as presented in the function

jointSurroPenalSimul(). Using default values, we expect 0.81 for R2
trial and 0.595

for Kendall’s τ.

Simulation results. Simulation results can be displayed using the S3 method summary().

This function allows argument R2boot to specify whether the confidence interval of R2
trial will

be computed using parametric bootstrapping (1) or the Delta method (0).

joint.simul10 <- jointSurroPenalSimul(nb.dataset = 10,
nbSubSimul = 600,

ntrialSimul = 30, LIMparam = 0.001, LIMlogl = 0.001,
LIMderiv = 0.001,

nb.mc = 200, nb.gh = 20, nb.gh2 = 32, true.init.val = 1,
print.iter = F)

summary(joint.simul10, R2boot = 0)

Simulation and estimation pamareters

nb.subject = 600

nb.trials = 30

nb.simul = 10

int.method = 2

nb.gh = 20

nb.gh2 = 32

nb.mc = 200

kappa.use = 4
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In the first part of the results, we present a brief summary of simulation and estimation

parameters, and the average number of iterations to reach convergence (n.iter = 14).

The next part presents a table of simulation results. Each row of the table corresponds to

a model parameter. The first column is the name of the parameter, followed by the value

assigned to the parameter during simulation. The next three columns correspond to the aver-

age of the estimates observed for all the generated datasets, the empirical standard errors and

the mean of the estimated standard error. The last column is the coverage probability (CP),

which is the proportion (%) of the 95% confidence intervals of the estimate that includes the

true value of the parameter. We considered 10 meta-analyses here, although simulation studies

more often require around 500 datasets of meta-analysis.

The last row of the results indicates the number of rejected datasets due to convergence

issues.

Discussion

This paper presents new tools for validating candidate surrogate endpoints using data from

multiple randomized clinical trials, with failure time endpoints. Since version 3.0.1, The R
frailtypack package implements the joint-surrogate model, which is a more attractive

approach than two-step approaches for evaluating surrogate endpoints based on a one-step

analysis strategy. The joint-surrogate model demonstrated better performances than the

two-step copula model or the one-step Poisson approach [17]. Furthermore, the new model

showed stable results even with a moderate trial size or number of trial as commonly encoun-

tered in practice, whereas the adjusted model estimated with the Bayesian framework showed

unstable results [11]

n.knots = 6

n.iter = 14

Simulation results

Parameters True value Mean Empirical SE Mean SE CP(%)

2 theta 3.5 3.451 0.711 0.545 80

3 zeta 1 1.049 0.22 0.177 70

4 gamma 2.5 2.642 0.957 0.711 80

5 alpha 1 1.009 0.135 0.138 90

6 sigma.S 0.7 0.608 0.361 0.426 90

7 sigma.T 0.7 0.627 0.347 0.459 80

8 sigma.ST 0.63 0.555 0.314 0.389 90

9 beta.S -1.25 -1.368 0.233 0.251 90

10 beta.T -1.25 -1.397 0.238 0.269 100

11 R2trial 0.81 0.82 0.181 0.521 80

12 K.tau 0.595 0.592 0.032 - 80

Rejected datasets: n(%) = 0(0)
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By varying the values of the arguments in the jointSurroPenal function, convergence

of the model is not always guaranteed. Therefore, it is important in the event of convergence

issues to know how to play with the arguments/values couple as shown in the previous section.

Thus, users can choose the method of integration, initial values, the number of nodes for

splines and the smoothing parameters, the number of nodes to use for the Gauss-Hermite

quadrature and the number of samples for the Monte-Carlo integration when applicable,

the random number generator, and other necessary arguments. It is also possible to set some

parameters of the model in the event of identifiability issues. This underlines the flexibility

of the frailtypack package in managing convergence issues. This flexibility is quite differ-

ent from that obtained with the surrosurv package [9] or macros SAS [10] for evaluating

surrogate endpoints using the two-step Copula model or one-step Poisson model. Other

advantages of our model compared to existing approaches [8, 13] are in the reduction of

convergences and numerical issues, the robustness to model misspecification, the surrogacy

evaluation based on a one-step approach and therefore the estimation of R2
trial without need

for adjustment on estimation errors. In addition, as underlined in the illustration section, the

interpretation of Kendall’s τ is different from that in the two-step copula approach.

Our previous paper [17] demonstrated the robustness of the joint surrogate model to model

misspecification, numerical integration and variations in data characteristics regarding the sur-

rogacy evaluation criteria (R2
trial and Kendall’s τ). It is robust to variations in the values of the

arguments regarding the surrogacy evaluation criteria. Thus, in the event of convergence,

change in arguments/values mostly produced similar results. For example, when we reduced

the number of samples for Monte-Carlo integration to 100 (nb.mc = 100) in the applica-

tion based on the advanced ovarian cancer meta-analysis dataset, we observed R2trial =
1.000 [95%CI: 0.998–1.002), R2boot = 0.981 [95%CI: 0.891–1.000],

Kendall’s τ = 0.683 [95%CI: 0.664–0.695], STE = -0.291 (HR =
0.747) and LCV = 9.161. These results are quite similar to those using nb.mc = 200
(see illustration section in manuscript). In addition, if we integrate over the random effect

at the individual level using the pseudo-adaptive Gaussian-Hermite quadrature (argument

adaptatif = 1) instead of the classical Gaussian-Hermite quadrature, the results are

similar with R2trial = 1.000 [95%CI: 0.998–1.002], R2boot = 0.982
[95%CI: 0.897–1.000], Kendall’s τ = 0.683 [95%CI: 0.664–0.696],
STE = -0.272 (HR = 0.762) and LCV = 9.162. These examples confirm the robust-

ness of the model previously discussed by Sofeu et al. (2019) using simulation studies.

Moreover, thanks to the jointSurroPenalSimul() function, it is possible to perform

simulation studies in order to plan a new trial and define the optimal number of clusters when

evaluating surrogate endpoints given the joint surrogate model. For example, if a given meta-

analysis includes few trials, simulation studies may help in establishing the minimum number

of centers to obtain the best estimate of the surrogacy evaluation criteria. Jurgen et al. [33] sug-

gested using clinical trial simulations to optimize adaptive trial designs. As they explained, the

typical goal of a clinical trial simulation is to identify a design that has a high probability of suc-

cess based on the most likely conditions but which can also perform well, or at least acceptably,

under more extreme conditions if necessary. Simulation studies can help if the recommended

values for the arguments do not make it possible to reach convergence or involve longer com-

puter time when fitting the joint surrogate model. Given the data characteristics, they can help

in choosing optimal values for some arguments (the number of quadrature nodes, the number

of samples for the Monte-Carlo integration and the number of nodes for splines) and in antici-

pating their impact on estimating the model parameters. The management of the convergence

issues by the program itself is described in S2G Appendix in S2 Appendix.
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Numerous tools have been presented in this paper for evaluating surrogacy. We have the

following: the surrogate threshold effect which is used in combination with R2
trial to assess the

validity of the potential surrogate endpoint; the predict() function used in a new trial to

predict the treatment effect of the true endpoint based on the observed treatment effect on the

surrogate endpoint; and the leave-one-out cross-validation which can be used to assess the

accuracy of the prediction using model (1). Furthermore, a graphical representation of the

baseline hazard and survival functions is possible using the plot() function.

The jointSurroPenal() function can also be used in interim analyses to estimate the

fixed treatment effect on the surrogate endpoint, taking into account competing risk of death

and heterogeneity in the data at the individual level and at the trial level in interaction with

treatment. This is an alternative to the joint frailty-copula model between tumor progression

and death for meta-analysis proposed in [34].

We now plan to extend the model (1) and the jointSurroPenal() function to take

into account interval censoring for endpoints where the exact event times are unknown. This

extension will also make it possible to model the baseline hazard functions parametrically,

using a Weibull distribution. To improve the use of frailtypack, intuition can be gained

by developing an associated interactive web app using the R package Shiny available at

https://CRAN.R-project.org/package=Shiny.

Supporting information

S1 Fig. Package characteristics (version 3.0.3.1). Blue cross is for the option available for a

given type of model in the package on CRAN, orange cross is for the option included in the

package but not yet on CRAN yet. Empty cells mean that an option is not available for a given

type of model. RE = Recurrent Event. TE = Terminal Event. LO = Longitudinal Outcome.

STE = Surrogate Threshold Effect. ODE = Ordinary Differential Equation.

(TIF)

S1 Appendix. Extension of the methodology.

(PDF)

S2 Appendix. Description of the arguments and return values for the functions.

(PDF)
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