Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorCAPITAINE, Louis
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorGENUER, Robin
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorTHIEBAUT, Rodolphe
dc.date.accessioned2021-04-30T10:53:20Z
dc.date.available2021-04-30T10:53:20Z
dc.date.issued2020-08-09
dc.identifier.issn0962-2802en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/27141
dc.description.abstractEnRandom forests are one of the state-of-the-art supervised machine learning methods and achieve good performance in high-dimensional settings where p, the number of predictors, is much larger than n, the number of observations. Repeated measurements provide, in general, additional information, hence they are worth accounted especially when analyzing high-dimensional data. Tree-based methods have already been adapted to clustered and longitudinal data by using a semi-parametric mixed effects model, in which the non-parametric part is estimated using regression trees or random forests. We propose a general approach of random forests for high-dimensional longitudinal data. It includes a flexible stochastic model which allows the covariance structure to vary over time. Furthermore, we introduce a new method which takes intra-individual covariance into consideration to build random forests. Through simulation experiments, we then study the behavior of different estimation methods, especially in the context of high-dimensional data. Finally, the proposed method has been applied to an HIV vaccine trial including 17 HIV-infected patients with 10 repeated measurements of 20,000 gene transcripts and blood concentration of human immunodeficiency virus RNA. The approach selected 21 gene transcripts for which the association with HIV viral load was fully relevant and consistent with results observed during primary infection.
dc.language.isoENen_US
dc.subject.enRepeated measurements
dc.subject.enStochastic mixed effects model
dc.subject.enTree-based methods
dc.subject.enHigh-dimensional data
dc.title.enRandom forests for high-dimensional longitudinal data
dc.typeArticle de revueen_US
dc.identifier.doi10.1177/0962280220946080en_US
dc.subject.halMathématiques [math]/Statistiques [math.ST]en_US
dc.identifier.pubmed32772626en_US
bordeaux.journalStatistical Methods in Medical Researchen_US
bordeaux.page166-184en_US
bordeaux.volume30en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamSISTM_BPH
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03066138
hal.version1
hal.exportfalse
workflow.import.sourcehal
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Statistical%20Methods%20in%20Medical%20Research&rft.date=2020-08-09&rft.volume=30&rft.issue=1&rft.spage=166-184&rft.epage=166-184&rft.eissn=0962-2802&rft.issn=0962-2802&rft.au=CAPITAINE,%20Louis&GENUER,%20Robin&THIEBAUT,%20Rodolphe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée