Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorNOZAIS, Victor
dc.contributor.authorBOUTINAUD, Philippe
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorVERRECCHIA, Violaine
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorGUEYE, Marie-Fateye
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorHERVE, Pierre-Yves
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorTZOURIO, Christophe
IDREF: 69829209
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorMAZOYER, Bernard
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorJOLIOT, Marc
dc.date.accessioned2021-04-06T13:48:55Z
dc.date.available2021-04-06T13:48:55Z
dc.date.issued2021-02-05
dc.identifier.issn1559-0089 (Electronic) 1539-2791 (Linking)en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/26875
dc.description.abstractEnFunctional connectivity analyses of fMRI data have shown that the activity of the brain at rest is spatially organized into resting-state networks (RSNs). RSNs appear as groups of anatomically distant but functionally tightly connected brain regions. Inter-RSN intrinsic connectivity analyses may provide an optimal spatial level of integration to analyze the variability of the functional connectome. Here we propose a deep learning approach to enable the automated classification of individual independent-component (IC) decompositions into a set of predefined RSNs. Two databases were used in this work, BIL&GIN and MRi-Share, with 427 and 1811 participants, respectively. We trained a multilayer perceptron (MLP) to classify each IC as one of 45 RSNs, using the IC classification of 282 participants in BIL&GIN for training and a 5-dimensional parameter grid search for hyperparameter optimization. It reached an accuracy of 92 %. Predictions for the remaining individuals in BIL&GIN were tested against the original classification and demonstrated good spatial overlap between the cortical RSNs. As a first application, we created an RSN atlas based on MRi-Share. This atlas defined a brain parcellation in 29 RSNs covering 96 % of the gray matter. Second, we proposed an individual-based analysis of the subdivision of the default-mode network into 4 networks. Minimal overlap between RSNs was found except in the angular gyrus and potentially in the precuneus. We thus provide the community with an individual IC classifier that can be used to analyze one dataset or to statistically compare different datasets for RSN spatial definitions.
dc.description.sponsorshipLaboratoire pour les applications en imagerie biomédicale - ANR-16-LCV2-0006en_US
dc.language.isoENen_US
dc.subject.enResting‐state
dc.subject.enArtificial intelligence
dc.subject.enNeuroimaging cohort
dc.subject.enIndependent‐component analysis
dc.subject.enBrain functional network
dc.subject.enClassification
dc.title.enDeep Learning-based Classification of Resting-state fMRI Independent-component Analysis
dc.title.alternativeNeuroinformaticsen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1007/s12021-021-09514-xen_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed33543442en_US
bordeaux.journalNeuroinformaticsen_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.teamHEALTHY_BPHen_US
bordeaux.teamVINTAGEen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDConseil Régional Aquitaineen_US
hal.identifierhal-03190773
hal.version1
hal.date.transferred2021-04-06T13:48:59Z
hal.audienceInternationale
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Neuroinformatics&rft.date=2021-02-05&rft.eissn=1559-0089%20(Electronic)%201539-2791%20(Linking)&rft.issn=1559-0089%20(Electronic)%201539-2791%20(Linking)&rft.au=NOZAIS,%20Victor&BOUTINAUD,%20Philippe&VERRECCHIA,%20Violaine&GUEYE,%20Marie-Fateye&HERVE,%20Pierre-Yves&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record