Validation of an Internationally Derived Patient Severity Phenotype to Support COVID-19 Analytics from Electronic Health Record Data
dc.rights.license | open | en_US |
dc.contributor.author | KLANN, Jeffrey G. | |
dc.contributor.author | WEBER, Griffin M. | |
dc.contributor.author | ESTIRI, Hossein | |
dc.contributor.author | MOAL, Bertrand | |
dc.contributor.author | AVILLACH, Paul | |
dc.contributor.author | HONG, Chuan | |
dc.contributor.author | CASTRO, Victor | |
dc.contributor.author | MAULHARDT, Thomas | |
dc.contributor.author | TAN, Amelia L. M. | |
dc.contributor.author | GEVA, Alon | |
dc.contributor.author | BEAULIEU-JONES, Brett K. | |
dc.contributor.author | MALOVINI, Alberto | |
dc.contributor.author | SOUTH, Andrew M. | |
dc.contributor.author | VISWESWARAN, Shyam | |
dc.contributor.author | OMENN, Gilbert S. | |
dc.contributor.author | NGIAM, Kee Yuan | |
dc.contributor.author | MANDL, Kenneth D. | |
dc.contributor.author | BOEKER, Martin | |
dc.contributor.author | OLSON, Karen L. | |
dc.contributor.author | MOWERY, Danielle L. | |
dc.contributor.author | MORRIS, Michele | |
dc.contributor.author | FOLLETT, Robert W. | |
dc.contributor.author | HANAUER, David A. | |
dc.contributor.author | BELLAZZI, Riccardo | |
dc.contributor.author | MOORE, Jason H. | |
dc.contributor.author | LOH, Ne-Hooi Will | |
dc.contributor.author | BELL, Douglas S. | |
dc.contributor.author | WAGHOLIKAR, Kavishwar B. | |
dc.contributor.author | CHIOVATO, Luca | |
dc.contributor.author | TIBOLLO, Valentina | |
dc.contributor.author | RIEG, Siegbert | |
dc.contributor.author | LI, Anthony L. L. J. | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | JOUHET, Vianney | |
dc.contributor.author | SCHRIVER, Emily | |
dc.contributor.author | SAMAYAMUTHU, Malarkodi J. | |
dc.contributor.author | XIA, Zongqi | |
dc.contributor.author | HUTCH, Meghan | |
dc.contributor.author | LUO, Yuan | |
dc.contributor.author | KOHANE, Isaac S. | |
dc.contributor.author | BRAT, Gabriel A. | |
dc.contributor.author | MURPHY, Shawn N. | |
dc.date.accessioned | 2021-04-02T13:19:42Z | |
dc.date.available | 2021-04-02T13:19:42Z | |
dc.date.issued | 2021-02-10 | |
dc.identifier.issn | 1067-5027 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/26866 | |
dc.description.abstractEn | INTRODUCTION: The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) is an international collaboration addressing COVID-19 with federated analyses of electronic health record (EHR) data. OBJECTIVE: We sought to develop and validate a computable phenotype for COVID-19 severity. METHODS: Twelve 4CE sites participated. First we developed an EHR-based severity phenotype consisting of six code classes, and we validated it on patient hospitalization data from the 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also piloted an alternative machine-learning approach and compared selected predictors of severity to the 4CE phenotype at one site. RESULTS: The full 4CE severity phenotype had pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of individual code categories for acuity had high variability - up to 0.65 across sites. At one pilot site, the expert-derived phenotype had mean AUC 0.903 (95% CI: 0.886, 0.921), compared to AUC 0.956 (95% CI: 0.952, 0.959) for the machine-learning approach. Billing codes were poor proxies of ICU admission, with as low as 49% precision and recall compared to chart review. DISCUSSION: We developed a severity phenotype using 6 code classes that proved resilient to coding variability across international institutions. In contrast, machine-learning approaches may overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold-standard outcomes, possibly due to heterogeneous pandemic conditions. CONCLUSION: We developed an EHR-based severity phenotype for COVID-19 in hospitalized patients and validated it at 12 international sites. | |
dc.language.iso | EN | en_US |
dc.rights | Attribution-NonCommercial 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/us/ | * |
dc.subject.en | Novel coronavirus | |
dc.subject.en | Disease severity | |
dc.subject.en | Computable phenotype | |
dc.subject.en | Medical informatics | |
dc.subject.en | Data networking | |
dc.subject.en | Data interoperability | |
dc.title.en | Validation of an Internationally Derived Patient Severity Phenotype to Support COVID-19 Analytics from Electronic Health Record Data | |
dc.title.alternative | J Am Med Inform Assoc | en_US |
dc.type | Article de revue | en_US |
dc.identifier.doi | 10.1093/jamia/ocab018 | en_US |
dc.subject.hal | Sciences du Vivant [q-bio]/Santé publique et épidémiologie | en_US |
dc.identifier.pubmed | 33566082 | en_US |
bordeaux.journal | Journal of the American Medical Informatics Association | en_US |
bordeaux.hal.laboratories | Bordeaux Population Health Research Center (BPH) - UMR 1219 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.team | ERIAS | en_US |
bordeaux.peerReviewed | oui | en_US |
bordeaux.inpress | non | en_US |
hal.identifier | hal-03188882 | |
hal.version | 1 | |
hal.date.transferred | 2021-04-02T13:19:56Z | |
hal.audience | Internationale | |
hal.export | true | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20American%20Medical%20Informatics%20Association&rft.date=2021-02-10&rft.eissn=1067-5027&rft.issn=1067-5027&rft.au=KLANN,%20Jeffrey%20G.&WEBER,%20Griffin%20M.&ESTIRI,%20Hossein&MOAL,%20Bertrand&AVILLACH,%20Paul&rft.genre=article |