Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorLIN, L.
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorHEJBLUM, Boris
ORCID: 0000-0003-0646-452X
IDREF: 189970316
dc.date.accessioned2021-02-03T14:31:58Z
dc.date.available2021-02-03T14:31:58Z
dc.date.issued2020
dc.identifier.issn1939-0068en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/26125
dc.description.abstractEnBayesian mixture models are increasingly used for model‐based clustering and the follow‐up analysis on the clusters identified. As such, they are of particular interest for analyzing cytometry data where unsupervised clustering and association studies are often part of the scientific questions. Cytometry data are large quantitative data measured in a multidimensional space that typically ranges from a few dimensions to several dozens, and which keeps increasing due to innovative high‐throughput biotechonologies. We present several recent parametric and nonparametric Bayesian mixture modeling approaches, and describe advantages and limitations of these models under different research context for cytometry data analysis. We also acknowledge current computational challenges associated with the use of Bayesian mixture models for analyzing cytometry data, and we draw attention to recent developments in advanced numerical algorithms for estimating large Bayesian mixture models, which we believe have the potential to make Bayesian mixture model more applicable to new types of single‐cell data with higher dimensions.
dc.language.isoENen_US
dc.subjectSISTM
dc.title.enBayesian mixture models for cytometry data analysis
dc.title.alternativeWires Comput Staten_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1002/wics.1535en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
bordeaux.journalWiley Interdisciplinary Reviews: Computational Statisticsen_US
bordeaux.page17en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.teamSISTM_BPH
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Wiley%20Interdisciplinary%20Reviews:%20Computational%20Statistics&rft.date=2020&rft.spage=17&rft.epage=17&rft.eissn=1939-0068&rft.issn=1939-0068&rft.au=LIN,%20L.&HEJBLUM,%20Boris&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée