Bayesian mixture models for cytometry data analysis
dc.rights.license | open | en_US |
dc.contributor.author | LIN, L. | |
hal.structure.identifier | Statistics In System biology and Translational Medicine [SISTM] | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | HEJBLUM, Boris
ORCID: 0000-0003-0646-452X IDREF: 189970316 | |
dc.date.accessioned | 2021-02-03T14:31:58Z | |
dc.date.available | 2021-02-03T14:31:58Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1939-0068 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/26125 | |
dc.description.abstractEn | Bayesian mixture models are increasingly used for model‐based clustering and the follow‐up analysis on the clusters identified. As such, they are of particular interest for analyzing cytometry data where unsupervised clustering and association studies are often part of the scientific questions. Cytometry data are large quantitative data measured in a multidimensional space that typically ranges from a few dimensions to several dozens, and which keeps increasing due to innovative high‐throughput biotechonologies. We present several recent parametric and nonparametric Bayesian mixture modeling approaches, and describe advantages and limitations of these models under different research context for cytometry data analysis. We also acknowledge current computational challenges associated with the use of Bayesian mixture models for analyzing cytometry data, and we draw attention to recent developments in advanced numerical algorithms for estimating large Bayesian mixture models, which we believe have the potential to make Bayesian mixture model more applicable to new types of single‐cell data with higher dimensions. | |
dc.language.iso | EN | en_US |
dc.subject | SISTM | |
dc.title.en | Bayesian mixture models for cytometry data analysis | |
dc.title.alternative | Wires Comput Stat | en_US |
dc.type | Article de revue | en_US |
dc.identifier.doi | 10.1002/wics.1535 | en_US |
dc.subject.hal | Sciences du Vivant [q-bio]/Santé publique et épidémiologie | en_US |
bordeaux.journal | Wiley Interdisciplinary Reviews: Computational Statistics | en_US |
bordeaux.page | 17 | en_US |
bordeaux.hal.laboratories | Bordeaux Population Health Research Center (BPH) - UMR 1219 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.team | SISTM_BPH | |
bordeaux.peerReviewed | oui | en_US |
bordeaux.inpress | non | en_US |
hal.export | false | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Wiley%20Interdisciplinary%20Reviews:%20Computational%20Statistics&rft.date=2020&rft.spage=17&rft.epage=17&rft.eissn=1939-0068&rft.issn=1939-0068&rft.au=LIN,%20L.&HEJBLUM,%20Boris&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |