Alternative Cholesky Decomposition and family of scale mixture of Normal distribution: A joint modeling approach
| dc.rights.license | open | en_US |
| dc.contributor.author | RIBEIRO, Vinícius Silva Osterne | |
| hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
| hal.structure.identifier | Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine [Bordeaux Sciences Agro] | |
| dc.contributor.author | BOMBRUN, Lionel
ORCID: 0000-0001-9036-3988 IDREF: 137837461 | |
| dc.contributor.author | NOBRE, Juvêncio Santos | |
| dc.contributor.author | CAVALCANTE, Charles Casimiro | |
| hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
| dc.contributor.author | BERTHOUMIEU, Yannick | |
| dc.date.accessioned | 2025-12-15T07:49:00Z | |
| dc.date.available | 2025-12-15T07:49:00Z | |
| dc.date.issued | 2026-01 | |
| dc.identifier.issn | 0165-1684 | en_US |
| dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/207962 | |
| dc.description.abstractEn | In Statistics, the analysis of longitudinal data is essential across various domains, including biomedical and agricultural research. Joint mean-covariance models have been widely used to capture within-subject dependence, often by parametrizing the scatter matrix via the Modified Cholesky Decomposition (MCD). However, the MCD has known drawbacks, such as sensitivity to the ordering of variables and challenges in parameter interpretation. As an alternative, the Alternative Cholesky Decomposition (ACD) offers improved numerical stability and interpretability, yet has been underexplored in robust modeling contexts. Traditional approaches also frequently assume normally distributed residuals, which may not hold in practice. While extensions based on the Student-t and Laplace distributions address heavier tails, they still rely on fixed parametric forms. To overcome both structural and distributional limitations, this paper proposes a novel joint regression model that combines the flexibility of ACD with the robustness of scale mixture of normal (SMN) distributions. We obtain maximum likelihood estimators and compare our model against classical and Student-t-based alternatives. Simulation studies show superior performance in estimation and prediction under outlier contamination. Real data applications further highlight the model’s robustness and practical utility. | |
| dc.language.iso | EN | en_US |
| dc.subject.en | Repeated measures | |
| dc.subject.en | Scale mixture of normal distribution | |
| dc.subject.en | Cholesky | |
| dc.subject.en | Decomposition | |
| dc.subject.en | Robust estimation | |
| dc.title.en | Alternative Cholesky Decomposition and family of scale mixture of Normal distribution: A joint modeling approach | |
| dc.type | Article de revue | en_US |
| dc.identifier.doi | 10.1016/j.sigpro.2025.110207 | en_US |
| dc.subject.hal | Informatique [cs]/Traitement du signal et de l'image | en_US |
| bordeaux.journal | Signal Processing | en_US |
| bordeaux.page | 110207 | en_US |
| bordeaux.volume | 238 | en_US |
| bordeaux.hal.laboratories | IMS : Laboratoire de l'Intégration du Matériau au Système - UMR 5218 | en_US |
| bordeaux.institution | Université de Bordeaux | en_US |
| bordeaux.institution | Bordeaux INP | en_US |
| bordeaux.institution | CNRS | en_US |
| bordeaux.team | SIGNAL AND IMAGE PROCESSING | en_US |
| bordeaux.peerReviewed | oui | en_US |
| bordeaux.inpress | non | en_US |
| bordeaux.import.source | crossref | |
| hal.popular | non | en_US |
| hal.audience | Internationale | en_US |
| hal.export | true | |
| workflow.import.source | crossref | |
| dc.rights.cc | Pas de Licence CC | en_US |
| bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Signal%20Processing&rft.date=2026-01&rft.volume=238&rft.spage=110207&rft.epage=110207&rft.eissn=0165-1684&rft.issn=0165-1684&rft.au=RIBEIRO,%20Vin%C3%ADcius%20Silva%20Osterne&BOMBRUN,%20Lionel&NOBRE,%20Juv%C3%AAncio%20Santos&CAVALCANTE,%20Charles%20Casimiro&BERTHOUMIEU,%20Yannick&rft.genre=article |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||