Show simple item record

hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
hal.structure.identifierPleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
dc.contributor.authorTATHO DJEANOU, Sthyve Junior
hal.structure.identifierPleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorLABARTHE, Simon
hal.structure.identifierInstitut Sophia Agrobiotech [ISA]
hal.structure.identifierModélisation et commande de systèmes biologiques et écologiques [MACBES]
hal.structure.identifierUniversité Côte d'Azur [UniCA]
dc.contributor.authorBALDAZZI, Valentina
dc.date.conference2025-10-05
dc.description.abstractEnUnderstanding microbial community functions is challenging due to complex interactions and assembly mechanisms; however, advances in sequencing have enabled the collection of multi-omics data, including population counts and metabolomic or metatranscriptomic data. Our main objective is to develop a mathematical model capable of integrating time series of multiomics data at a community scale. We introduce the community metabolic flux analysis (cMFA) method, which generalizes metabolic flux analyses (MFA) , using a list of time series data of experimentally measured production and consumption rates of metabolites and microorganism growth . We aim to infer, for each member ofthe microbial community, the intracellular distribution of metabolic fluxes by solving the inference problem. We evaluated the cMFA method on synthetic data from dynamic models of increasingly complex microbial communities, based on metabolic models of different mutants of Escherichia coli using dynamic flux balance analysis . Synthetic metatranscriptomic data were obtained from internal metabolic fluxes in the dynamic model. Different regularization terms were tested, including different levels of sparsity, for the selected penalty weight . To evaluate the robustness of the method, multiplebenchmarks were tested. These included assessments of the robustness of the method to data noise, incomplete meta-transcriptomic data, inaccurate prior knowledge of metabolic import rates and larger microbial community. We are currently working with real data, including data on denitrification and cheese production
dc.description.sponsorshipComputationel models of crop plant microbial biodiversity - ANR-22-PEAE-0011
dc.language.isoen
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enInference
dc.subject.enBiological system
dc.subject.enApplied mathematics
dc.subject.enDynamical system
dc.title.encMFA for multi-omics data integration in microbial community models
dc.typeAutre communication scientifique (congrès sans actes - poster - séminaire...)
dc.subject.halInformatique [cs]/Bio-informatique [q-bio.QM]
dc.subject.halMathématiques [math]
bordeaux.conference.titleCompSysBio 2025: Advanced lecture course on computational systems biology
bordeaux.countryFR
bordeaux.conference.cityAussois
bordeaux.peerReviewednon
hal.identifierhal-05318560
hal.version1
hal.invitednon
hal.proceedingsnon
hal.conference.organizerDaniel Jost, CNRS / ENS Lyon
hal.conference.end2025-10-10
hal.popularoui
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-05318560v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=TATHO%20DJEANOU,%20Sthyve%20Junior&LABARTHE,%20Simon&BALDAZZI,%20Valentina&rft.genre=conference


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record