Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierNeurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
dc.contributor.authorDI LODOVICO, Laura
dc.contributor.authorAL TABCHI, Amir
dc.contributor.authorCLARKE, Julia
dc.contributor.authorMANCUSI, Rossella Letizia
dc.contributor.authorMESSECA, Dylan
dc.contributor.authorDURIEZ, Philibert
dc.contributor.authorHANACHI, Mouna
dc.contributor.authorGORWOOD, Philip
dc.date.accessioned2025-07-02T11:53:54Z
dc.date.available2025-07-02T11:53:54Z
dc.date.issued2024-07
dc.identifier.issn1072-4133en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/207182
dc.description.abstractEnBackground: Treatment of anorexia nervosa (AN) sometimes requires hospitalisation, which is often lengthy, with little ability to predict individual trajectory. Depicting specific profiles of treatment response and their clinical predictors could be beneficial to tailor inpatient management. The aim of this research was to identify clusters of weight recovery during inpatient treatment, and their clinical predictors. Methods: A sample of 181 inpatients who completed a treatment programme for AN was included in a retrospective study. A latent class mixed model approach was used to identify distinct weight-gain trajectories. Clinical variables were introduced in a multinomial logistic regression model as predictors of the different classes. Results: A four-class quadratic model was retained, able to correctly classify 63.7% of the cohort. It encompassed a late-rising, flattening, moderate trajectory of body mass index (BMI) increase (class 1), a late-rising, steady, high trajectory (class 2), an early-rising, flattening, high trajectory (class 3) and an early-rising, steady, high trajectory (class 4). Significant predictors of belonging to a class were baseline BMI (all classes), illness duration (class 2), and benzodiazepine prescription (class 3). Conclusion: Predicting different kinetics of weight recovery based on routinely collected clinical indicators could improve clinician awareness and patient engagement by enabling shared expectations of treatment response. © 2024 Eating Disorders Association and John Wiley & Sons Ltd.
dc.language.isoENen_US
dc.subject.enAnorexia nervosa
dc.subject.enBody mass index
dc.subject.enCluster analysis
dc.subject.enEating disorders
dc.title.enTrajectories and predictive factors of weight recovery in patients with anorexia nervosa completing treatment. A latent class mixed model approach
dc.title.alternativeEur Eat Disord Reven_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1002/erv.3088en_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
dc.identifier.pubmed38504499en_US
bordeaux.journalEuropean Eating Disorders Reviewen_US
bordeaux.page758 – 770en_US
bordeaux.volume32en_US
bordeaux.hal.laboratoriesNeurocentre Magendie - U1215en_US
bordeaux.issue4en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamEndocannabinoïdes et Neuroadaptationen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-05140332
hal.version1
hal.date.transferred2025-07-02T11:53:56Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=European%20Eating%20Disorders%20Review&rft.date=2024-07&rft.volume=32&rft.issue=4&rft.spage=758%20%E2%80%93%20770&rft.epage=758%20%E2%80%93%20770&rft.eissn=1072-4133&rft.issn=1072-4133&rft.au=DI%20LODOVICO,%20Laura&AL%20TABCHI,%20Amir&CLARKE,%20Julia&MANCUSI,%20Rossella%20Letizia&MESSECA,%20Dylan&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record