Show simple item record

dc.rights.licenseopenen_US
dc.contributor.authorGASSER, Emile
dc.contributor.authorSU, Emilie
dc.contributor.authorVAIDŽIULYTĖ, Kotryna
hal.structure.identifierBordeaux Sciences Economiques [BSE]
dc.contributor.authorABBADE, Nassiba
dc.contributor.authorCOGNART, Hamizah
dc.contributor.authorMANNEVILLE, Jean-Baptiste
dc.contributor.authorVIOVY, Jean-Louis
dc.contributor.authorPIEL, Matthieu
dc.contributor.authorPIERGA, Jean-Yves
dc.contributor.authorTERAO, Kyohei
dc.contributor.authorVILLARD, Catherine
dc.date.accessioned2025-06-16T14:26:13Z
dc.date.available2025-06-16T14:26:13Z
dc.date.issued2024-12-07
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206926
dc.description.abstractEnThe metastatic cascade includes a blood circulation step for cells detached from the primary tumor. This stage involves significant shear stress as well as large and fast deformation as the cells circulate through the microvasculature. These mechanical stimuli are well reproduced in microfluidic devices. However, the recovery dynamics after deformation is also pivotal to understand how a cell can pass through the multiple capillary constrictions encountered during a single hemodynamic cycle. The microfluidic system developed in this work allows single cell recovery to be studied under flow-free conditions following pressure-actuated cell deformation inside constricted microchannels. We used three breast cancer cell lines – namely MCF-7, SK-BR3 and MDA-MB231 – as cellular models representative of different cancer phenotypes. Changing the size of the constriction allows exploration of moderate to strong deformation regimes, the latter being associated with the formation of plasma membrane blebs. In the regime of moderate deformation, all cell types display a fast elastic recovery behavior followed by a slower viscoelastic regime, well described by a double exponential decay. Among the three cell types, cells of the mesenchymal phenotype, i.e. the MDA-MB231 cells, are softer and the most fluid-like, in agreement with previous studies. Our main finding here is that the fast elastic recovery regime revealed by our novel microfluidic system is under the control of cell contractility ensured by the integrity of the cell cortex. Our results suggest that the cell cortex plays a major role in the transit of circulating tumor cells by allowing their fast morphological recovery after deformation in blood capillaries.
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subject.enCancer
dc.subject.enBiomechanical Model
dc.subject.enCirculating Tumor Cell
dc.subject.enMicrofabricated Cell Culture Devices
dc.subject.enMicrofluidic
dc.subject.enRheological Behavior
dc.title.enDeformation under flow and morphological recovery of cancer cells
dc.typeArticle de revueen_US
dc.identifier.doi10.1039/D4LC00246Fen_US
dc.subject.halSciences de l'Homme et Société/Economies et financesen_US
dc.description.sponsorshipEuropeITMO Canceren_US
bordeaux.journalLab on a Chipen_US
bordeaux.page3930-3944en_US
bordeaux.volume24en_US
bordeaux.hal.laboratoriesBordeaux Sciences Economiques / Bordeaux School of Economics (BSE) - UMR 6060en_US
bordeaux.issue16en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDLigue Contre le Canceren_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Lab%20on%20a%20Chip&rft.date=2024-12-07&rft.volume=24&rft.issue=16&rft.spage=3930-3944&rft.epage=3930-3944&rft.au=GASSER,%20Emile&SU,%20Emilie&VAID%C5%BDIULYT%C4%96,%20Kotryna&ABBADE,%20Nassiba&COGNART,%20Hamizah&rft.genre=article


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record