Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorMATSULEVITS, Anna
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorCOUPÉ, Pierrick
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorNGUYEN, Huy-Dung
dc.contributor.authorTALOZZI, Lia
dc.contributor.authorFOULON, Chris
dc.contributor.authorNACHEV, Parashkev
dc.contributor.authorCORBETTA, Maurizio
hal.structure.identifierNeurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
dc.contributor.authorTOURDIAS, Thomas
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorTHIEBAUT DE SCHOTTEN, Michel
dc.date.accessioned2025-05-27T15:06:31Z
dc.date.available2025-05-27T15:06:31Z
dc.date.issued2024-09-30
dc.identifier.issn2632-1297en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206759
dc.description.abstractEnThis study investigates the efficacy of deep-learning models in expediting the generation of disconnectomes for individualized prediction of neuropsychological outcomes one year after stroke. Utilising a 3D U-Net network, we trained a model on a dataset of N = 1333 synthetic lesions and corresponding disconnectomes, subsequently applying it to N = 1333 real stroke lesions. The model-generated disconnection patterns were then projected into a two-dimensional 'morphospace' via uniform manifold approximation and projection for dimension reduction dimensionality reduction. We correlated the positioning within this morphospace with one-year neuropsychological scores across 86 metrics in a novel cohort of 119 stroke patients, employing multiple regression models and validating the findings in an out-of-sample group of 20 patients. Our results demonstrate that the 3D U-Net model captures the critical information of conventional disconnectomes with a notable increase in efficiency, generating deep-disconnectomes 720 times faster than current state-of-The-Art software. The predictive accuracy of neuropsychological outcomes by deep-disconnectomes averaged 85.2% (R2 = 0.208), which significantly surpassed the conventional disconnectome approach (P = 0.009). These findings mark a substantial advancement in the production of disconnectome maps via deep learning, suggesting that this method could greatly enhance the prognostic assessment and clinical management of stroke survivors by incorporating disconnection patterns as a predictive tool. © 2024 The Author(s). Published by Oxford University Press on behalf of the Guarantors of Brain.
dc.description.sponsorshipVaincre les maladies vasculaires cérébrales par un nouveau paradigme de prévention de précision et d'innovation thérapeutiqueen_US
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enDisconnectome
dc.subject.enLong-term predictions
dc.subject.enStroke
dc.subject.enDeep-learning
dc.subject.enWhite matter
dc.title.enDeep learning disconnectomes to accelerate and improve long-Term predictions for post-stroke symptoms
dc.title.alternativeBrain Communen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1093/braincomms/fcae338en_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
dc.identifier.pubmed39464219en_US
dc.description.sponsorshipEuropeEuropean Union’s Horizon 2020en_US
bordeaux.journalBrain Communicationsen_US
bordeaux.volume6en_US
bordeaux.hal.laboratoriesNeurocentre Magendie - U1215en_US
bordeaux.issue5en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.institutionCNRS
bordeaux.teamRelations glie-neuroneen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDEuropean Research Councilen_US
hal.identifierhal-05087205
hal.version1
hal.date.transferred2025-05-27T15:06:36Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Brain%20Communications&rft.date=2024-09-30&rft.volume=6&rft.issue=5&rft.eissn=2632-1297&rft.issn=2632-1297&rft.au=MATSULEVITS,%20Anna&COUP%C3%89,%20Pierrick&NGUYEN,%20Huy-Dung&TALOZZI,%20Lia&FOULON,%20Chris&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée