Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorKOSOVARI, Melissa
dc.contributor.authorBUFFETEAU, Thierry
dc.contributor.authorTHOMAS, Laurent
dc.contributor.authorGUAY-BEGIN, Andree-Anne
dc.contributor.authorVELLUTINI, Luc
dc.contributor.authorMCGETTRICK, James
dc.contributor.authorLAROCHE, Gaetan
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorDURRIEU, Marie-Christine
dc.date.accessioned2025-04-30T11:55:15Z
dc.date.available2025-04-30T11:55:15Z
dc.date.issued2024-06-04
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206498
dc.description.abstractEnBiomaterial surface engineering and the integration of cell-adhesive ligands are crucial in biological research and biotechnological applications. The interplay between cells and their microenvironment, influenced by chemical and physical cues, impacts cellular behavior. Surface modification of biomaterials profoundly affects cellular responses, especially at the cell-surface interface. This work focuses on enhancing cellular activities through material manipulation, emphasizing silanization for further functionalization with bioactive molecules such as RGD peptides to improve cell adhesion. The grafting of three distinct silanes onto silicon wafers using both spin coating and immersion methods was investigated. This study sheds light on the effects of different alkyl chain lengths and protecting groups on cellular behavior, providing valuable insights into optimizing silane-based self-assembled monolayers (SAMs) before peptide or protein grafting for the first time. Specifically, it challenges the common use of APTES molecules in this context. These findings advance our understanding of surface modification strategies, paving the way for tailoring biomaterial surfaces to modulate the cellular behavior for diverse biotechnological applications.
dc.description.sponsorshipConception de surfaces bioinspirées avec des propriétés mécaniques et de bioactivité contrôlées pour la synthèse de plateforme in vitro de culture cellulaire - ANR-21-CE06-0031en_US
dc.language.isoENen_US
dc.subject.enBiomaterial surface engineering
dc.subject.enSilanization
dc.subject.enIntegrin-based ligands
dc.subject.enSurface functionalization
dc.subject.enCell adhesion
dc.title.enSilanization Strategies for Tailoring Peptide Functionalization on Silicon Surfaces: Implications for Enhancing Stem Cell Adhesion
dc.typeArticle de revueen_US
dc.identifier.doi10.1021/acsami.4c03727en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalACS Applied Materials & Interfacesen_US
bordeaux.page29770-29782en_US
bordeaux.volume16en_US
bordeaux.hal.laboratoriesCBMN : Chimie & de Biologie des Membranes & des Nano-objets - UMR 5248en_US
bordeaux.issue23en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Applied%20Materials%20&%20Interfaces&rft.date=2024-06-04&rft.volume=16&rft.issue=23&rft.spage=29770-29782&rft.epage=29770-29782&rft.au=KOSOVARI,%20Melissa&BUFFETEAU,%20Thierry&THOMAS,%20Laurent&GUAY-BEGIN,%20Andree-Anne&VELLUTINI,%20Luc&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée