Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorRUSSON, Dylan
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorGUENNEC, Antoine
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorNAREDO-TURRADO, Juan
dc.contributor.authorXU, Binbin
dc.contributor.authorBOUSSUGE, Cédric
dc.contributor.authorBATTAGLIA, Valérie
dc.contributor.authorHIRON, Benoit
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorLAGARDE, Emmanuel
dc.date.accessioned2025-04-14T12:40:54Z
dc.date.available2025-04-14T12:40:54Z
dc.date.issued2025-02-28
dc.identifier.issn2405-8440en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206189
dc.description.abstractEnWith pedestrian crossings implicated in a significant proportion of vehicle-pedestrian accidents and the French government's initiatives to improve pedestrian safety, there is a pressing need for efficient, large-scale evaluation of pedestrian crossings. This study proposes the deployment of advanced deep learning neural networks to automate the assessment of pedestrian crossings and roundabouts, leveraging aerial and street-level imagery sourced from Google Maps and Google Street View. Utilizing ConvNextV2, ResNet50, and ResNext50 models, we conducted a comprehensive analysis of pedestrian crossings across various urban and rural settings in France, focusing on nine identified risk factors. Our methodology incorporates Mask R-CNN for precise segmentation and detection of zebra crossings and roundabouts, overcoming traditional data annotation challenges and extending coverage to underrepresented areas. The analysis reveals that the ConvNextV2 model, in particular, demonstrates superior performance across most tasks, despite challenges such as data imbalance and the complex nature of variables like visibility and parking proximity. The findings highlight the potential of convolutional neural networks in improving pedestrian safety by enabling scalable and objective evaluations of crossings. The study underscores the necessity for continued dataset augmentation and methodological advancements to tackle identified challenges. Our research contributes to the broader field of road safety by demonstrating the feasibility and effectiveness of automated, image-based pedestrian crossing audits, paving the way for more informed and effective safety interventions. © 2025 The Authors
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enConvolutional neural networks
dc.subject.enDeep learning
dc.subject.enImage segmentation
dc.subject.enInfrastructure analysis
dc.subject.enPedestrian crossings
dc.subject.enPedestrian safety
dc.title.enEvaluating pedestrian crossing safety: Implementing and evaluating a convolutional neural network model trained on paired aerial and subjective perspective images
dc.title.alternativeHeliyonen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.heliyon.2025.e42428en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed40028551en_US
bordeaux.journalHeliyonen_US
bordeaux.pagee42428en_US
bordeaux.volume11en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue4en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamAHEAD_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Heliyon&rft.date=2025-02-28&rft.volume=11&rft.issue=4&rft.spage=e42428&rft.epage=e42428&rft.eissn=2405-8440&rft.issn=2405-8440&rft.au=RUSSON,%20Dylan&GUENNEC,%20Antoine&NAREDO-TURRADO,%20Juan&XU,%20Binbin&BOUSSUGE,%20C%C3%A9dric&rft.genre=article


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record