Show simple item record

dc.rights.licenseopenen_US
dc.contributor.authorNGUYEN, Van Tuan
dc.contributor.authorFERMANIAN, Adeline
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorBARBIERI, Antoine
dc.contributor.authorZOHAR, Sarah
dc.contributor.authorJANNOT, Anne-Sophie
dc.contributor.authorBUSSY, Simon
dc.contributor.authorGUILLOUX, Agathe
dc.date.accessioned2025-02-12T13:06:21Z
dc.date.available2025-02-12T13:06:21Z
dc.date.issued2024-12-01
dc.identifier.issn1541-0420en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/204820
dc.description.abstractEnThis paper introduces a prognostic method called FLASH that addresses the problem of joint modeling of longitudinal data and censored durations when a large number of both longitudinal and time-independent features are available. In the literature, standard joint models are either of the shared random effect or joint latent class type. Combining ideas from both worlds and using appropriate regularization techniques, we define a new model with the ability to automatically identify significant prognostic longitudinal features in a high-dimensional context, which is of increasing importance in many areas such as personalized medicine or churn prediction. We develop an estimation methodology based on the expectation-maximization algorithm and provide an efficient implementation. The statistical performance of the method is demonstrated both in extensive Monte Carlo simulation studies and on publicly available medical datasets. Our method significantly outperforms the state-of-the-art joint models in terms of C-index in a so-called "real-time" prediction setting, with a computational speed that is orders of magnitude faster than competing methods. In addition, our model automatically identifies significant features that are relevant from a practical point of view, making it interpretable, which is of the greatest importance for a prognostic algorithm in healthcare.
dc.language.isoENen_US
dc.subject.enHigh-dimensional statistics
dc.subject.enJoint models
dc.subject.enLongitudinal data
dc.subject.enSurvival analysis
dc.title.enAn efficient joint model for high dimensional longitudinal and survival data via generic association features
dc.title.alternativeBiometricsen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1093/biomtc/ujae149en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed39679741en_US
bordeaux.journalBiometricsen_US
bordeaux.pageujae149en_US
bordeaux.volume80en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue4en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamBIOSTAT_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biometrics&rft.date=2024-12-01&rft.volume=80&rft.issue=4&rft.spage=ujae149&rft.epage=ujae149&rft.eissn=1541-0420&rft.issn=1541-0420&rft.au=NGUYEN,%20Van%20Tuan&FERMANIAN,%20Adeline&BARBIERI,%20Antoine&ZOHAR,%20Sarah&JANNOT,%20Anne-Sophie&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record