Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorLOPEZ-SERRANO, Cristina
dc.contributor.authorCOTE-PARADIS, Yeva
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorHABENSTEIN, Birgit
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorLOQUET, Antoine
dc.contributor.authorLE COZ, Cedric
dc.contributor.authorRUEL, Jean
dc.contributor.authorLAROCHE, Gaetan
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorDURRIEU, Marie-Christine
dc.date.accessioned2025-02-11T13:54:08Z
dc.date.available2025-02-11T13:54:08Z
dc.date.issued2024-07-31
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/204795
dc.description.abstractEnMethods for promoting and controlling the differentiation of human mesenchymal stem cells (hMSCs) in vitro before in vivo transplantation are crucial for the advancement of tissue engineering and regenerative medicine. In this study, we developed poly(ethylene glycol) diacrylate (PEGDA) hydrogels with tunable mechanical properties, including elasticity and viscoelasticity, coupled with bioactivity achieved through the immobilization of a mixture of RGD and a mimetic peptide of the BMP-2 protein. Despite the key relevance of hydrogel mechanical properties for cell culture, a standard for its characterization has not been proposed, and comparisons between studies are challenging due to the different techniques employed. Here, a comprehensive approach was employed to characterize the elasticity and viscoelasticity of these hydrogels, integrating compression testing, rheology, and atomic force microscopy (AFM) microindentation. Distinct mechanical behaviors were observed across different PEGDA compositions, and some consistent trends across multiple techniques were identified. Using a photoactivated cross-linker, we controlled the functionalization density independently of the mechanical properties. X-ray photoelectrin spectroscopy and fluorescence microscopy were employed to evaluate the functionalization density of the materials before the culturing of hMSCs on them. The cells cultured on all functionalized hydrogels expressed an early osteoblast marker (Runx2) after 2 weeks, even in the absence of a differentiation-inducing medium compared to our controls. Additionally, after only 1 week of culture with osteogenic differentiation medium, cells showed accelerated differentiation, with clear morphological differences observed among cells in the different conditions. Notably, cells on stiff but stress-relaxing hydrogels exhibited an overexpression of the osteocyte marker E11. This suggests that the combination of the functionalization procedure with the mechanical properties of the hydrogel provides a potent approach to promoting the osteogenic differentiation of hMSCs.
dc.description.sponsorshipConception de surfaces bioinspirées avec des propriétés mécaniques et de bioactivité contrôlées pour la synthèse de plateforme in vitro de culture cellulaire - ANR-21-CE06-0031en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enHydrogel
dc.subject.enMechanical properties
dc.subject.enMesenchymal stem cell
dc.subject.enOsteogenic differentiation
dc.subject.enViscoelasticity
dc.title.enIntegrating Mechanics and Bioactivity: A Detailed Assessment of Elasticity and Viscoelasticity at Different Scales in 2D Biofunctionalized PEGDA Hydrogels for Targeted Bone Regeneration
dc.typeArticle de revueen_US
dc.identifier.doi10.1021/acsami.4c10755en_US
dc.subject.halChimie/Matériauxen_US
dc.subject.halPhysique [physics]/Mécanique [physics]en_US
dc.identifier.pubmed39041490en_US
bordeaux.journalACS Applied Materials and Interfacesen_US
bordeaux.page39165-39180en_US
bordeaux.volume16en_US
bordeaux.hal.laboratoriesCBMN : Chimie & de Biologie des Membranes & des Nano-objets - UMR 5248en_US
bordeaux.issue30en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccCC BY-NCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Applied%20Materials%20and%20Interfaces&rft.date=2024-07-31&rft.volume=16&rft.issue=30&rft.spage=39165-39180&rft.epage=39165-39180&rft.au=LOPEZ-SERRANO,%20Cristina&COTE-PARADIS,%20Yeva&HABENSTEIN,%20Birgit&LOQUET,%20Antoine&LE%20COZ,%20Cedric&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée