Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorHANO, Nanami
dc.contributor.authorTAKEDA, Yoshimi
dc.contributor.authorKANAWA, Shizuka
dc.contributor.authorRYU, Naoya
dc.contributor.authorNAGAOKA, Shoji
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorODA, Reiko
dc.contributor.authorIHARA, Hirotaka
dc.contributor.authorTAKAFUJI, Makoto
dc.date.accessioned2025-01-21T11:18:26Z
dc.date.available2025-01-21T11:18:26Z
dc.date.issued2024-09-20
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/204451
dc.description.abstractEnPolymer microspheres containing submicron-sized surface dimples were prepared through the acid-dissolving removal of silica nanoparticles as templates from the surface of core-shell microspheres, which were prepared by modified suspension polymerization of a silica nanoparticle-dispersed polymerizable monomer mixture (methyl methacrylate and divinylbenzene dispersing). We demonstrated depth control of the dimples on the surface of polymer microspheres and evaluated their capturing properties. The depth of the dimples could be facilely controlled by changing the surface polarity of silica nanoparticles (1 µm) as templates during the synthesis of the core-shell microspheres. The depth of the prepared dimples ranged from 250 to 810 nm, and the gate diameter of the dimple was related to its depth owing to the spherical shape of the template. The inner surfaces of the dimples were evaluated based on the adsorption of cationic and anionic fluorescent dyes. Confocal laser microscopy observations indicated that the inner surfaces of the dimples were densely stained with both fluorescent dyes, whereas the outer surfaces of the microspheres were not stained, suggesting that the inner surfaces of the dimples were more hydrophilic. Silica particles smaller than the gate diameter of the dimple were crammed (or jammed) into the inner space of the dimple, and the captured silica particles did not drop off even after washing with water more than five times. Because the larger silica nanoparticles could not be trapped, the dimples could selectively capture the nanosized objects in their inner space.
dc.language.isoENen_US
dc.subject.enCore-shell microspheres
dc.subject.enHybrid particles
dc.subject.enSelfassembly
dc.subject.enSurface modification
dc.subject.enSuspension polymerization
dc.title.enFabrication of depth-controlled dimples on polymer microsphere and capturing of nano-sized objects
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.colsurfa.2024.134321en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalColloids and Surfaces Aen_US
bordeaux.page134321en_US
bordeaux.volume697en_US
bordeaux.hal.laboratoriesCBMN : Chimie & de Biologie des Membranes & des Nano-objets - UMR 5248en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Colloids%20and%20Surfaces%20A&rft.date=2024-09-20&rft.volume=697&rft.spage=134321&rft.epage=134321&rft.au=HANO,%20Nanami&TAKEDA,%20Yoshimi&KANAWA,%20Shizuka&RYU,%20Naoya&NAGAOKA,%20Shoji&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée