Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut des Systèmes Intelligents et de Robotique [ISIR]
dc.contributor.authorGALLAND, Lucie
hal.structure.identifierInstitut des Systèmes Intelligents et de Robotique [ISIR]
dc.contributor.authorPELACHAUD, Catherine
hal.structure.identifierSommeil, Addiction et Neuropsychiatrie [Bordeaux] [SANPSY]
dc.contributor.authorPECUNE, Florian
dc.date.accessioned2025-01-03T13:32:38Z
dc.date.available2025-01-03T13:32:38Z
dc.date.conference2024-09-18
dc.identifier.urioai:crossref.org:10.18653/v1/2024.sigdial-1.17
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/204130
dc.description.abstractEnThe demand for mental health services has risen substantially in recent years, leading to challenges in meeting patient needs promptly. Virtual agents capable of emulating motivational interviews (MI) have emerged as a potential solution to address this issue, offering immediate support that is especially beneficial for therapy modalities requiring multiple sessions. However, developing effective patient simulation methods for training MI dialog systems poses challenges, particularly in generating syntactically and contextually correct, and diversified dialog acts while respecting existing patterns and trends in therapy data. This paper investigates data-driven approaches to simulate patients for training MI dialog systems. We propose a novel method that leverages time series models to generate diverse and contextually appropriate patient dialog acts, which are then transformed into utterances by a conditioned large language model. Additionally, we introduce evaluation measures tailored to assess the quality and coherence of simulated patient dialog. Our findings highlight the effectiveness of dialog act-conditioned approaches in improving patient simulation for MI, offering insights for developing virtual agents to support mental health therapy.
dc.language.isoENen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.sourcecrossref
dc.title.enGenerating Unexpected yet Relevant User Dialog Acts
dc.typeCommunication dans un congrèsen_US
dc.identifier.doi10.18653/v1/2024.sigdial-1.17en_US
dc.subject.halInformatique [cs]/Interface homme-machine [cs.HC]en_US
dc.subject.halSciences du Vivant [q-bio]/Ingénierie biomédicaleen_US
bordeaux.page192-203en_US
bordeaux.hal.laboratoriesSANPSY (Sommeil, Addiction, Neuropsychiatrie) - UMR 6033en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.conference.title25th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL)en_US
bordeaux.countryjpen_US
bordeaux.conference.cityKyotoen_US
bordeaux.import.sourcedissemin
hal.proceedingsouien_US
hal.conference.end2024-09-20
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=192-203&rft.epage=192-203&rft.au=GALLAND,%20Lucie&PELACHAUD,%20Catherine&PECUNE,%20Florian&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée