Show simple item record

dc.rights.licenseopenen_US
dc.contributor.authorRAKOTONIRINA, Herbert
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorGURIDI, Ignacio
dc.contributor.authorHONEINE, Paul
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorATTEIA, Olivier
IDREF: 078590272
dc.contributor.authorVAN EXEM, Antonin
dc.date.accessioned2024-10-02T07:44:58Z
dc.date.available2024-10-02T07:44:58Z
dc.date.issued2024-01-03
dc.identifier.issn1874-8961en_US
dc.identifier.urioai:crossref.org:10.1007/s11004-023-10125-2
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/202109
dc.description.abstractEnKriging is the most widely used spatial interpolation method in geostatistics. For many environmental applications, kriging may have to satisfy the stationarity and isotropy hypothesis, and new techniques using machine learning suffer from a lack of labeled data. In this paper, we propose the use of deep image prior, which is a U-net-like deep neural network designed for image reconstruction, to perform spatial interpolation and conditional map generation without any prior learning. This approach allows us to overcome the assumptions for kriging as well as the lack of labeled data when proposing uncertainty and probability above a certain threshold. The proposed method is based on a convolutional neural network that generates a map from random values by minimizing the difference between the output map and the observed values. With this new method of spatial interpolation, we generate n maps to obtain a map of uncertainty and a map of probability of exceeding the threshold. Experiments demonstrate the relevance of the proposed methods for spatial interpolation on both the well-known digital elevation model data and the more challenging case of pollution mapping. The results obtained with the three datasets demonstrate competitive performance compared with state-of-the-art methods.
dc.language.isoENen_US
dc.sourcecrossref
dc.title.enSpatial Interpolation and Conditional Map Generation Using Deep Image Prior for Environmental Applications
dc.typeArticle de revueen_US
dc.identifier.doi10.1007/s11004-023-10125-2en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalMathematical Geosciencesen_US
bordeaux.page949-974en_US
bordeaux.volume56en_US
bordeaux.hal.laboratoriesEPOCen_US
bordeaux.issue5en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamPROMESSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Geosciences&rft.date=2024-01-03&rft.volume=56&rft.issue=5&rft.spage=949-974&rft.epage=949-974&rft.eissn=1874-8961&rft.issn=1874-8961&rft.au=RAKOTONIRINA,%20Herbert&GURIDI,%20Ignacio&HONEINE,%20Paul&ATTEIA,%20Olivier&VAN%20EXEM,%20Antonin&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record