Seed2LP: seed inference in metabolic networks for reverse ecology applications
hal.structure.identifier | Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE] | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | GHASSEMI NEDJAD, Chabname | |
hal.structure.identifier | Laboratoire des Sciences du Numérique de Nantes [LS2N] | |
hal.structure.identifier | Combinatoire et Bioinformatique [LS2N - équipe COMBI] | |
hal.structure.identifier | Nantes Université [Nantes Univ] | |
dc.contributor.author | BOLTEAU, Mathieu | |
hal.structure.identifier | Centre Hospitalier Régional Universitaire de Brest [CHRU Brest] | |
dc.contributor.author | BOURNEUF, Lucas | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | PAULEVE, Loic | |
hal.structure.identifier | Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE] | |
dc.contributor.author | FRIOUX, Clémence | |
dc.date.issued | 2024-09-27 | |
dc.description.abstractEn | A challenging problem in microbiology is to determine nutritional requirements of microorganisms and culture them, especially for the microbial dark matter detected solely with culture-independent methods. The latter foster an increasing amount of genomic sequences that can be explored with reverse ecology approaches to raise hypotheses on the corresponding populations. Building upon genome scale metabolic networks (GSMNs) obtained from genome annotations, metabolic models predict contextualised phenotypes using nutrient information. We developed the tool Seed2LP, addressing the inverse problem of predicting source nutrients, or seeds, from a GSMN and a metabolic objective. The originality of Seed2LP is its hybrid model, combining a scalable and discrete Boolean approximation of metabolic activity, with the numerically accurate flux balance analysis (FBA). Seed inference is highly customisable, with multiple search and solving modes, exploring the search space of external and internal metabolites combinations. Application to a benchmark of 107 curated GSMNs highlights the usefulness of a logic modelling method over a graph-based approach to predict seeds, and the relevance of hybrid solving to satisfy FBA constraints. Focusing on the dependency between metabolism and environment, Seed2LP is a computational support contributing to address the multifactorial challenge of culturing possibly uncultured microorganisms. Seed2LP is available on https://github.com/bioasp/seed2lp. | |
dc.description.sponsorship | Computationel models of crop plant microbial biodiversity - ANR-22-PEAE-0011 | |
dc.description.sponsorship | Abstraction des Réseaux de Réactions vers des Réseaux Booléens pour Améliorer l'Inférence et le Contrôle en Biologie des Systèmes - ANR-23-CE45-0008 | |
dc.description.sponsorship | Shared CULTuromics platform to IncreaSe acceSs to the vast number of microorganisms, some yet uncultivated, to understand the key functIons and services to huMan ecosystem of MicrobiOmes - ANR-24-PESA-0002 | |
dc.language.iso | en | |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.subject.en | Metabolic modelling | |
dc.subject.en | growth medium inference | |
dc.subject.en | uncultured bacteria | |
dc.subject.en | reverse ecology | |
dc.subject.en | network expansion | |
dc.subject.en | constraint-based modelling | |
dc.title.en | Seed2LP: seed inference in metabolic networks for reverse ecology applications | |
dc.type | Document de travail - Pré-publication | |
dc.identifier.doi | 10.1101/2024.09.26.615309 | |
dc.subject.hal | Informatique [cs]/Bio-informatique [q-bio.QM] | |
dc.subject.hal | Sciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM] | |
hal.identifier | hal-04713829 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-04713829v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2024-09-27&rft.au=GHASSEMI%20NEDJAD,%20Chabname&BOLTEAU,%20Mathieu&BOURNEUF,%20Lucas&PAULEVE,%20Loic&FRIOUX,%20Cl%C3%A9mence&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |