Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorSEGALAS, Corentin
dc.contributor.authorLEYRAT, Clémence
dc.contributor.authorCARPENTER, James
dc.contributor.authorWILLIAMSON, Elizabeth
dc.date.accessioned2024-09-24T07:38:33Z
dc.date.available2024-09-24T07:38:33Z
dc.date.issued2023-01-25
dc.identifier.issn0277-6715en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/201760
dc.description.abstractEnOne of the main challenges when using observational data for causal inference is the presence of confounding. A classic approach to account for confounding is the use of propensity score techniques that provide consistent estimators of the causal treatment effect under four common identifiability assumptions for causal effects, including that of no unmeasured confounding. Propensity score matching is a very popular approach which, in its simplest form, involves matching each treated patient to an untreated patient with a similar estimated propensity score, that is, probability of receiving the treatment. The treatment effect can then be estimated by comparing treated and untreated patients within the matched dataset. When missing data arises, a popular approach is to apply multiple imputation to handle the missingness. The combination of propensity score matching and multiple imputation is increasingly applied in practice.However, in this article we demonstrate that combining multiple imputation and propensity score matching can lead to over-coverage of the confidence interval for the treatment effect estimate. We explore the cause of this over-coverage and we evaluate, in this context, the performance of a correction to Rubin's rules for multiple imputation proposed by finding that this correction removes the over-coverage.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enconfounding missing data multiple imputation propensity score matching
dc.subject.enconfounding
dc.subject.enmissing data
dc.subject.enmultiple imputation
dc.subject.enpropensity score matching
dc.title.enPropensity score matching after multiple imputation when a confounder has missing data
dc.title.alternativeStat Meden_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1002/sim.9658en_US
dc.subject.halStatistiques [stat]/Méthodologie [stat.ME]en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed36695043en_US
bordeaux.journalStatistics in Medicineen_US
bordeaux.page1082 - 1095en_US
bordeaux.volume42en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue7en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.institutionINRIAen_US
bordeaux.teamSISTM_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-04693080
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Statistics%20in%20Medicine&rft.date=2023-01-25&rft.volume=42&rft.issue=7&rft.spage=1082%20-%201095&rft.epage=1082%20-%201095&rft.eissn=0277-6715&rft.issn=0277-6715&rft.au=SEGALAS,%20Corentin&LEYRAT,%20Cl%C3%A9mence&CARPENTER,%20James&WILLIAMSON,%20Elizabeth&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée