Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorFERTE, Thomas
hal.structure.identifierService Expérimentation et Développement [Bordeaux] [SED]
dc.contributor.authorDUTARTRE, Dan
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorHEJBLUM, Boris
ORCID: 0000-0003-0646-452X
IDREF: 189970316
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorGRIFFIER, Romain
IDREF: 252908562
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorJOUHET, Vianney
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorTHIEBAUT, Rodolphe
hal.structure.identifierMéthodes avancées d’apprentissage statistique et de contrôle [ASTRAL]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLEGRAND, Pierrick
IDREF: 094614032
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierMnemonic Synergy [Mnemosyne]
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorHINAUT, Xavier
IDREF: 22823218X
dc.contributor.editorSALAKHUTDINOV, Ruslan
dc.date.accessioned2024-09-23T12:50:00Z
dc.date.available2024-09-23T12:50:00Z
dc.date.issued2024-07-08
dc.date.conference2024-07-21
dc.identifier.issn1938-7228en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/201744
dc.description.abstractEnIn this work, we aimed at forecasting the number of SARS-CoV-2 hospitalized patients at 14 days to help anticipate the bed requirements of a large scale hospital using public data and electronic health records data. Previous attempts ledto mitigated performance in this high-dimension setting; we introduce a novel approach to time series forecasting by providing an alternative to conventional methods to deal with high number of potential features of interest (409 predictors). We integrate Reservoir Computing (RC) with feature selection using a genetic algorithm (GA) to gatheroptimal non-linear combinations of inputs to improve prediction in sample-efficient context. We illustrate that the RC-GA combination exhibitsexcellent performance in forecasting SARS-CoV-2 hospitalizations. This approach outperformed the use of RC alone and other conventional methods: LSTM, Transformers, Elastic-Net, XGBoost. Notably, this work marks the pioneering use of RC (along with GA) in the realm of short and high-dimensional time series, positioning it as a competitive and innovative approach in comparison to standard methods.
dc.language.isoENen_US
dc.title.enReservoir Computing for Short High-Dimensional Time Series: an Application to SARS-CoV-2 Hospitalization Forecast
dc.typeCommunication dans un congrèsen_US
dc.subject.halStatistiques [stat]/Machine Learning [stat.ML]en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
bordeaux.volume235en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.institutionINRIAen_US
bordeaux.conference.titleProceedings of the 41 st International Conference on Machine Learningen_US
bordeaux.countryaten_US
bordeaux.title.proceedingInternational Conference on Machine Learning, 21-27 July 2024, Vienna, Austriaen_US
bordeaux.teamSISTM_BPHen_US
bordeaux.teamAHEAD_BPHen_US
bordeaux.conference.cityVienneen_US
bordeaux.import.sourcehal
hal.identifierhal-04693930
hal.version1
hal.proceedingsouien_US
hal.conference.end2024-07-27
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2024-07-08&rft.volume=235&rft.eissn=1938-7228&rft.issn=1938-7228&rft.au=FERTE,%20Thomas&DUTARTRE,%20Dan&HEJBLUM,%20Boris&GRIFFIER,%20Romain&JOUHET,%20Vianney&rft.genre=unknown


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record