Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire d'océanographie de Villefranche [LOV]
dc.contributor.authorNOVOA, Stefani
hal.structure.identifierLaboratoire d'océanographie de Villefranche [LOV]
dc.contributor.authorDOXARAN, David
hal.structure.identifierInstitut méditerranéen d'océanologie [MIO]
dc.contributor.authorODY, Anouck
hal.structure.identifierInstitut Royal des Sciences Naturelles de Belgique = Royal Belgian Institute of Natural Sciences [IRSNB / RBINS]
dc.contributor.authorVANHELLEMONT, Quinten
hal.structure.identifierGEO Transfert
dc.contributor.authorLAFON, Virginie
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorLUBAC, Bertrand
hal.structure.identifierMer, molécules et santé EA 2160 [MMS]
dc.contributor.authorGERNEZ, Pierre
dc.date.accessioned2024-09-23T09:05:16Z
dc.date.available2024-09-23T09:05:16Z
dc.date.issued2017-01-12
dc.identifier.issn2072-4292en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/201728
dc.description.abstractEnThe accurate measurement of suspended particulate matter (SPM) concentrations in coastal waters is of crucial importance for ecosystem studies, sediment transport monitoring, and assessment of anthropogenic impacts in the coastal ocean. Ocean color remote sensing is an efficient tool to monitor SPM spatio-temporal variability in coastal waters. However, near-shore satellite images are complex to correct for atmospheric effects due to the proximity of land and to the high level of reflectance caused by high SPM concentrations in the visible and near-infrared spectral regions. The water reflectance signal ((w)) tends to saturate at short visible wavelengths when the SPM concentration increases. Using a comprehensive dataset of high-resolution satellite imagery and in situ SPM and water reflectance data, this study presents (i) an assessment of existing atmospheric correction (AC) algorithms developed for turbid coastal waters; and (ii) a switching method that automatically selects the most sensitive SPM vs. (w) relationship, to avoid saturation effects when computing the SPM concentration. The approach is applied to satellite data acquired by three medium-high spatial resolution sensors (Landsat-8/Operational Land Imager, National Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite and Aqua/Moderate Resolution Imaging Spectrometer) to map the SPM concentration in some of the most turbid areas of the European coastal ocean, namely the Gironde and Loire estuaries as well as Bourgneuf Bay on the French Atlantic coast. For all three sensors, AC methods based on the use of short-wave infrared (SWIR) spectral bands were tested, and the consistency of the retrieved water reflectance was examined along transects from low- to high-turbidity waters. For OLI data, we also compared a SWIR-based AC (ACOLITE) with a method based on multi-temporal analyses of atmospheric constituents (MACCS). For the selected scenes, the ACOLITE-MACCS difference was lower than 7%. Despite some inaccuracies in (w) retrieval, we demonstrate that the SPM concentration can be reliably estimated using OLI, MODIS and VIIRS, regardless of their differences in spatial and spectral resolutions. Match-ups between the OLI-derived SPM concentration and autonomous field measurements from the Loire and Gironde estuaries' monitoring networks provided satisfactory results. The multi-sensor approach together with the multi-conditional algorithm presented here can be applied to the latest generation of ocean color sensors (namely Sentinel2/MSI and Sentinel3/OLCI) to study SPM dynamics in the coastal ocean at higher spatial and temporal resolutions.
dc.language.isoENen_US
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enremote sensing
dc.subject.ensuspended particulate matter
dc.subject.encoastal waters
dc.subject.enriver plumes
dc.subject.enmulti-conditional algorithm
dc.title.enAtmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters
dc.typeArticle de revueen_US
dc.identifier.doi10.3390/rs9010061en_US
dc.subject.halPlanète et Univers [physics]/Sciences de la Terre/Océanographieen_US
bordeaux.journalRemote Sensingen_US
bordeaux.volume9en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamMETHYSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03502962
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Remote%20Sensing&rft.date=2017-01-12&rft.volume=9&rft.issue=1&rft.eissn=2072-4292&rft.issn=2072-4292&rft.au=NOVOA,%20Stefani&DOXARAN,%20David&ODY,%20Anouck&VANHELLEMONT,%20Quinten&LAFON,%20Virginie&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record