Afficher la notice abrégée

dc.rights.licenseopen
hal.structure.identifierDipartimento di Chimica Industriale ‘‘Toso Montanari’’
dc.contributor.authorROSCIONI, Otello Maria
hal.structure.identifierDipartimento di Chimica Industriale ‘‘Toso Montanari’’
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorMUCCIOLI, Luca
hal.structure.identifierIMEC [IMEC]
dc.contributor.authorMITYASHIN, Alexander
hal.structure.identifierUniv Mons, Lab Chem Novel Mat, Belgium
dc.contributor.authorCORNIL, Jérôme
hal.structure.identifierDipartimento di Chimica Industriale ‘‘Toso Montanari’’
dc.contributor.authorZANNONI, Claudio
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2016
dc.identifier.issn1932-7447
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/20152
dc.description.abstractEnWe present molecular dynamics simulations of self-assembled monolayers (SAMs) chemisorbed on an atomically flat amorphous silicon dioxide substrate. We model two prototypical SAM-forming alkylsilanes, octadecyltrichlorosilane (OTS) and 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS), that find widespread use in organic electronic applications. Crucially, our model does not rely on an explicit bonding between the alkylsilane and the substrate, thus allowing for the spontaneous organization of molecules into regular structures, which we studied as a function of coverage. By comparing the calculated tilt angle, film thickness, and lattice parameters with experiments, we conclude that the simulated morphologies are quantitatively consistent with the experimental evidence, demonstrating the accuracy of the simulation methodology. We take advantage of the atomistic resolution of the calculations for carrying out a detailed one-to-one comparison between the structure and the electronic properties of the two SAMs. In particular, we find that OTS molecules show a coverage-dependent tilt, while FDTS molecules are always vertically oriented, regardless of the coverage. More importantly for organic electronic applications, we observe that OTS SAMs do not alter the electrostatic potential of silica, while FDTS SAMs induce a negative voltage shift which increases with coverage and saturates at about -2 V
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.subject.enAmorphous silicon
dc.subject.enElectronic properties
dc.subject.enMolecular dynamics
dc.subject.enMolecules
dc.subject.enMonolayers
dc.subject.enSilica
dc.subject.enSilicon oxides
dc.subject.enSubstrates
dc.subject.enView at Publisher| Export | Download | Add to List| More... Journal of Physical Chemistry C Volume 120
dc.subject.enIssue 27
dc.subject.en14 July 2016
dc.subject.enPages 14652-14662 Structural characterization of alkylsilane and fluoroalkylsilane self-assembled monolayers on SiO2 by molecular dynamics simulations (Article) Roscioni
dc.subject.enO.M.a
dc.subject.enMuccioli
dc.subject.enL.abc
dc.subject.enMityashin
dc.subject.enA.d
dc.subject.enCornil
dc.subject.enJ.e
dc.subject.enZannoni
dc.subject.enC.a a Dipartimento di Chimica Industriale Toso Montanari
dc.subject.enUniversità di Bologna
dc.subject.enBologna
dc.subject.enItaly b Laboratoire de Chimie des Polymères Organiques
dc.subject.enUMR 5629
dc.subject.enUniversité de Bordeaux
dc.subject.enPessac
dc.subject.enFrance c Institut des Sciences Molécularies
dc.subject.enUMR 5255
dc.subject.enTalence
dc.subject.enFrance View additional affiliations View references (81) Abstract We present molecular dynamics simulations of self-assembled monolayers (SAMs) chemisorbed on an atomically flat amorphous silicon dioxide substrate. We model two prototypical SAM-forming alkylsilanes
dc.subject.enoctadecyltrichlorosilane (OTS) and 1H
dc.subject.en1H
dc.subject.en2H
dc.subject.en2H-perfluorodecyltrichlorosilane (FDTS)
dc.subject.enthat find widespread use in organic electronic applications. Crucially
dc.subject.enour model does not rely on an explicit bonding between the alkylsilane and the substrate
dc.subject.enthus allowing for the spontaneous organization of molecules into regular structures
dc.subject.enwhich we studied as a function of coverage. By comparing the calculated tilt angle
dc.subject.enfilm thickness
dc.subject.enand lattice parameters with experiments
dc.subject.enwe conclude that the simulated morphologies are quantitatively consistent with the experimental evidence
dc.subject.endemonstrating the accuracy of the simulation methodology. We take advantage of the atomistic resolution of the calculations for carrying out a detailed one-to-one comparison between the structure and the electronic properties of the two SAMs. In particular
dc.subject.enwe find that OTS molecules show a coverage-dependent tilt
dc.subject.enwhile FDTS molecules are always vertically oriented
dc.subject.enregardless of the coverage. More importantly for organic electronic applications
dc.subject.enwe observe that OTS SAMs do not alter the electrostatic potential of silica
dc.subject.enwhile FDTS SAMs induce a negative voltage shift which increases with coverage and saturates at about -2 V. © 2016 American Chemical Society. Indexed keywords Engineering controlled terms: Amorphous silicon
dc.subject.enSubstrates Atomistic resolution
dc.subject.enElectrostatic potentials
dc.subject.enExperimental evidence
dc.subject.enMolecular dynamics simulations
dc.subject.enOctadecyltrichlorosilane
dc.subject.enPerfluorodecyltrichlorosilane
dc.subject.enSimulation methodology
dc.subject.enStructural characterization
dc.subject.enSelf assembled monolayers
dc.title.enStructural characterization of alkylsilane and fluoroalkylsilane self-assembled monolayers on SiO2 by molecular dynamics simulations
dc.typeArticle de revue
dc.identifier.doi10.1021/acs.jpcc.6b03226
dc.subject.halChimie/Polymères
bordeaux.journalJournal of Physical Chemistry C
bordeaux.page14652-14662
bordeaux.volume120
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.issue27
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
bordeaux.peerReviewedoui
hal.identifierhal-01416651
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01416651v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Physical%20Chemistry%20C&rft.date=2016&rft.volume=120&rft.issue=27&rft.spage=14652-14662&rft.epage=14652-14662&rft.eissn=1932-7447&rft.issn=1932-7447&rft.au=ROSCIONI,%20Otello%20Maria&MUCCIOLI,%20Luca&MITYASHIN,%20Alexander&CORNIL,%20Je%CC%81ro%CC%82me&ZANNONI,%20Claudio&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée