Show simple item record

dc.rights.licenseopenen_US
dc.contributor.authorRUSTAND, Denis
dc.contributor.authorVAN NIEKERK, Janet
dc.contributor.authorKRAINSKI, Elias Teixeira
dc.contributor.authorRUE, Håvard
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorPROUST LIMA, Cecile
ORCID: 0000-0002-9884-955X
IDREF: 114375747
dc.date.accessioned2024-09-06T11:45:11Z
dc.date.available2024-09-06T11:45:11Z
dc.date.issued2024-04-01
dc.identifier.issn1465-4644en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/201481
dc.description.abstractEnModeling longitudinal and survival data jointly offers many advantages such as addressing measurement error and missing data in the longitudinal processes, understanding and quantifying the association between the longitudinal markers and the survival events, and predicting the risk of events based on the longitudinal markers. A joint model involves multiple submodels (one for each longitudinal/survival outcome) usually linked together through correlated or shared random effects. Their estimation is computationally expensive (particularly due to a multidimensional integration of the likelihood over the random effects distribution) so that inference methods become rapidly intractable, and restricts applications of joint models to a small number of longitudinal markers and/or random effects. We introduce a Bayesian approximation based on the integrated nested Laplace approximation algorithm implemented in the R package R-INLA to alleviate the computational burden and allow the estimation of multivariate joint models with fewer restrictions. Our simulation studies show that R-INLA substantially reduces the computation time and the variability of the parameter estimates compared with alternative estimation strategies. We further apply the methodology to analyze five longitudinal markers (3 continuous, 1 count, 1 binary, and 16 random effects) and competing risks of death and transplantation in a clinical trial on primary biliary cholangitis. R-INLA provides a fast and reliable inference technique for applying joint models to the complex multivariate data encountered in health research.
dc.description.sponsorshipModèles conjoints pour l'épidémiologie et la recherche clinique - ANR-21-CE36-0013en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subject.enBayesian inference
dc.subject.enCompeting risks
dc.subject.enComputational approaches comparison
dc.subject.enEfficient estimation
dc.subject.enJoint modeling
dc.subject.enMultivariate longitudinal markers
dc.title.enFast and flexible inference for joint models of multivariate longitudinal and survival data using integrated nested Laplace approximations
dc.title.alternativeBiostatisticsen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1093/biostatistics/kxad019en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed37531620en_US
bordeaux.journalBiostatisticsen_US
bordeaux.page429–448en_US
bordeaux.volume25en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue2en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamBIOSTAT_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biostatistics&rft.date=2024-04-01&rft.volume=25&rft.issue=2&rft.spage=429%E2%80%93448&rft.epage=429%E2%80%93448&rft.eissn=1465-4644&rft.issn=1465-4644&rft.au=RUSTAND,%20Denis&VAN%20NIEKERK,%20Janet&KRAINSKI,%20Elias%20Teixeira&RUE,%20H%C3%A5vard&PROUST%20LIMA,%20Cecile&rft.genre=article


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record