Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierIconeus
hal.structure.identifierPhysique pour la médecine [PhysMed Paris]
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorBERTOLO, Adrien
hal.structure.identifierIconeus
dc.contributor.authorFERRIER, Jeremy
hal.structure.identifierIconeus
hal.structure.identifierPhysique pour la médecine [PhysMed Paris]
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorCAZZANELLI, Silvia
hal.structure.identifierIconeus
hal.structure.identifierPhysique pour la médecine [PhysMed Paris]
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorDIEBOLT, Samuel
hal.structure.identifierIconeus
hal.structure.identifierPhysique pour la médecine [PhysMed Paris]
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorTANTER, Mickael
hal.structure.identifierLaboratoire Plasticité du Cerveau Brain Plasticity (UMR 8249) [PdC]
hal.structure.identifierPhysique pour la médecine [PhysMed Paris]
dc.contributor.authorPEZET, Sophie
hal.structure.identifierIconeus
hal.structure.identifierPhysique pour la médecine [PhysMed Paris]
hal.structure.identifierBiologie des maladies cardiovasculaires = Biology of Cardiovascular Diseases
dc.contributor.authorPERNOT, Mathieu
hal.structure.identifierIconeus
dc.contributor.authorOSMANSKI, Bruno-Félix
hal.structure.identifierPhysique pour la médecine [PhysMed Paris]
hal.structure.identifierPhysique des ondes pour la médecine
dc.contributor.authorDEFFIEUX, Thomas
dc.date.accessioned2024-09-04T13:36:25Z
dc.date.available2024-09-04T13:36:25Z
dc.date.issued2023-10-23
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/201434
dc.description.abstractEnFunctional ultrasound (fUS) has received growing attention in preclinical research in the past decade, providing a new tool to measure functional connectivity (FC) and brain task-evoked responses with single-trial detection capability in both anesthetized and awake conditions. Most fUS studies rely on 2D linear arrays to acquire one slice of the brain. Volumetric fUS using 2D matrix or row-column arrays has recently been demonstrated in rats and mice but requires invasive craniotomy to expose the brain due to a lack of sensitivity. In a previous study, we proposed the use of motorized linear arrays, allowing imaging through the skull in mice for multiple slices with high sensitivity. However, the tradeoff between the field of view and temporal resolution introduced by motorized scanning prevents acquiring brain-wide resting-state FC data with a sufficient volume rate for resting-state FC analysis. Here, we propose a new hybrid solution optimized and dedicated to brain-wide transcranial FC studies in mice, based on a newly developed multi-array transducer allowing simultaneous multi-slicing of the entire mouse cerebrum. We first demonstrate that our approach provides a better imaging quality compared to other existing methods. Then, we show the ability to image the whole mouse brain non-invasively through the intact skin and skull during visual stimulation under light anesthesia to validate this new approach. Significant activation was detected along the whole visual pathway, at both single and group levels, with more than 10% of augmentation of the cerebral blood volume (CBV) signal during the visual stimulation compared to baseline. Finally, we assessed resting-state FC in awake head-fixed animals. Several robust and long-ranged FC patterns were identified in both cortical and sub-cortical brain areas, corresponding to functional networks already described in previous fMRI studies. Together, these results show that the multi-array probe is a valuable approach to measure brain-wide hemodynamic activity in mice with an intact skull. Most importantly, its ability to identify robust resting-state networks is paving the way towards a better understanding of the mouse brain functional organization and its breakdown in genetic models of neuropsychiatric diseases.
dc.language.isoENen_US
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.envolumetric imaging functional ultrasound brain imaging visual pathway functional connectivity awake mice connectomics
dc.subject.envolumetric imaging
dc.subject.enfunctional ultrasound
dc.subject.enbrain imaging
dc.subject.envisual pathway
dc.subject.enfunctional connectivity
dc.subject.enawake mice
dc.subject.enconnectomics
dc.title.enHigh sensitivity mapping of brain-wide functional networks in awake mice using simultaneous multi-slice fUS imaging
dc.typeArticle de revueen_US
dc.identifier.doi10.1162/imag_a_00030en_US
dc.subject.halSciences cognitives/Neurosciencesen_US
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologieen_US
bordeaux.journalImaging Neuroscienceen_US
bordeaux.page1 - 18en_US
bordeaux.volume1en_US
bordeaux.hal.laboratoriesBiologie des maladies cardiovasculaires (BMC) - UMR 1034en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-04682305
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Imaging%20Neuroscience&rft.date=2023-10-23&rft.volume=1&rft.spage=1%20-%2018&rft.epage=1%20-%2018&rft.au=BERTOLO,%20Adrien&FERRIER,%20Jeremy&CAZZANELLI,%20Silvia&DIEBOLT,%20Samuel&TANTER,%20Mickael&rft.genre=article


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record