Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA]
dc.contributor.authorGUILLAUD, Etienne
ORCID: 0000-0002-4875-1458
IDREF: 112598277
hal.structure.identifierInstitut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA]
dc.contributor.authorLECONTE, Vincent
hal.structure.identifierInstitut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA]
dc.contributor.authorDOAT, Emilie
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorGUEHL, Dominique
hal.structure.identifierInstitut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA]
dc.contributor.authorCAZALETS, Jean-Rene
ORCID: 0000-0001-9047-3933
IDREF: 032170149
dc.date.accessioned2024-09-02T07:48:36Z
dc.date.available2024-09-02T07:48:36Z
dc.date.issued2024-01-11
dc.identifier.issn2373-8065en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/201372
dc.description.abstractEnThis study investigates the impact of gravity on lower limb muscle coordination during pedaling. It explores how pedaling behaviors, kinematics, and muscle activation patterns dynamically adapts to changes in gravity and resistance levels. The experiment was conducted in parabolic flights, simulating microgravity, hypergravity (1.8 g), and normogravity conditions. Participants pedaled on an ergometer with varying resistances. The goal was to identify potential changes in muscle synergies and activation strategies under different gravitational contexts. Results indicate that pedaling cadence adjusted naturally in response to both gravity and resistance changes. Cadence increased with higher gravity and decreased with higher resistance levels. Muscular activities were characterized by two synergies representing pull and push phases of pedaling. The timing of synergy activation was influenced by gravity, with a delay in activation observed in microgravity compared to other conditions. Despite these changes, the velocity profile of pedaling remained stable across gravity conditions. The findings strongly suggest that the CNS dynamically manages the shift in body weight by finely tuning muscular coordination, thereby ensuring the maintenance of a stable motor output. Furthermore, electromyography analysis suggest that neuromuscular discharge frequencies were not affected by gravity changes. This implies that the types of muscle fibers recruited during exercise in modified gravity are similar to those used in normogravity. This research has contributed to a better understanding of how the human locomotor system responds to varying gravitational conditions, shedding light on the potential mechanisms underlying astronauts' gait changes upon returning from space missions.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.title.enSensorimotor adaptation of locomotor synergies to gravitational constraint
dc.title.alternativeNPJ Microgravityen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1038/s41526-024-00350-2en_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
dc.identifier.pubmed38212311en_US
bordeaux.journalNPJ Microgravityen_US
bordeaux.page1-5en_US
bordeaux.volume10en_US
bordeaux.hal.laboratoriesInstitut de neurosciences cognitives et intégratives d'Aquitaine (INCIA) - UMR 5287en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDCentre National d’Etudes Spatialesen_US
bordeaux.import.sourcepubmed
hal.identifierhal-04683448
hal.version1
hal.date.transferred2024-09-02T07:48:39Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcepubmed
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=NPJ%20Microgravity&rft.date=2024-01-11&rft.volume=10&rft.issue=1&rft.spage=1-5&rft.epage=1-5&rft.eissn=2373-8065&rft.issn=2373-8065&rft.au=GUILLAUD,%20Etienne&LECONTE,%20Vincent&DOAT,%20Emilie&GUEHL,%20Dominique&CAZALETS,%20Jean-Rene&rft.genre=article


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record