Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorRIOT, Alexandre
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorPANETTIERI, Enrico
IDREF: 228223156
dc.contributor.authorCOSCULLUELA, Antonio
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorMONTEMURRO, Marco
IDREF: 171660978
dc.date.accessioned2024-07-16T13:51:25Z
dc.date.available2024-07-16T13:51:25Z
dc.date.issued2024-05-01
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/200974
dc.description.abstractEnModern additive manufacturing processes enable fabricating architected cellular materials of complex shape, which can be used for different purposes. Among them, lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties, like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios. A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work. The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure. Four geometries, i.e., cubic body centered cell, octet cell, rhombic-dodecahedron and truncated cuboctahedron 2þ, are investigated. Specifically, the influence of the relative density of the representative volume element of each geometry, the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated. The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.
dc.language.isoENen_US
dc.subject.enLattice structures
dc.subject.enArchitected cellular materials
dc.subject.enDynamic simulation
dc.subject.enEnergy absorption
dc.subject.enGeometrical imperfection
dc.subject.enAdditive manufacturing
dc.title.enInfluence of manufacturing process-induced geometrical defects on the energy absorption capacity of polymer lattice structures
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.dt.2023.09.003en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalDefence Technologyen_US
bordeaux.page47-59en_US
bordeaux.volume35en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDDirection Générale de l’Armementen_US
hal.identifierhal-04650179
hal.version1
hal.date.transferred2024-07-16T13:51:28Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Defence%20Technology&rft.date=2024-05-01&rft.volume=35&rft.spage=47-59&rft.epage=47-59&rft.au=RIOT,%20Alexandre&PANETTIERI,%20Enrico&COSCULLUELA,%20Antonio&MONTEMURRO,%20Marco&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée