Show simple item record

dc.rights.licenseopen
hal.structure.identifierInstitut de Physique de Nice [INPHYNI]
dc.contributor.authorEZZAIER, Hinda
hal.structure.identifierInstitut de Physique de Nice [INPHYNI]
dc.contributor.authorALVES MARINS, Jessica
hal.structure.identifierInstitut de Physique de Nice [INPHYNI]
dc.contributor.authorCLAUDET, Cyrille
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 3 LCPO : Polymer Self-Assembly & Life Sciences
dc.contributor.authorHEMERY, Gauvin
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 3 LCPO : Polymer Self-Assembly & Life Sciences
dc.contributor.authorSANDRE, Olivier
hal.structure.identifierInstitut de Physique de Nice [INPHYNI]
dc.contributor.authorKUZHIR, Pavel
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2018
dc.identifier.issn2076-4991
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/20026
dc.description.abstractEnIn this work, we have studied field-induced aggregation and magnetic separation—realized in a microfluidic channel equipped with a single magnetizable micropillar—of multicore iron oxide nanoparticles (IONPs) also called " nanoflowers " of an average size of 27 ± 4 nm and covered by either a citrate or polyethylene (PEG) monolayer having a thickness of 0.2–1 nm and 3.4–7.8 nm, respectively. The thickness of the adsorbed molecular layer is shown to strongly affect the magnetic dipolar coupling parameter because thicker molecular layers result in larger separation distances between nanoparticle metal oxide multicores thus decreasing dipolar magnetic forces between them. This simple geometrical constraint effect leads to the following important features related to the aggregation and magnetic separation processes: (a) Thinner citrate layer on the IONP surface promotes faster and stronger field-induced aggregation resulting in longer and thicker bulk needle-like aggregates as compared to those obtained with a thicker PEG layer; (b) A stronger aggregation of citrated IONPs leads to an enhanced retention capacity of these IONPs by a magnetized micropillar during magnetic separation. However, the capture efficiency Λ at the beginning of the magnetic separation seems to be almost independent of the adsorbed layer thickness. This is explained by the fact that only a small portion of nanoparticles composes bulk aggregates, while the main part of nanoparticles forms chains whose capture efficiency is independent of the adsorbed layer thickness but depends solely on the Mason number Ma. More precisely, the capture efficiency shows a power law trend Λ ∝ Ma −n , with n ≈ 1.4–1.7 at 300 < Ma < 10^4 , in agreement with a new theoretical model. Besides these fundamental issues, the current work shows that the multicore IONPs with a size of about 30 nm have a good potential for use in biomedical sensor applications where an efficient low-field magnetic separation is required. In these applications, the nanoparticle surface design should be carried out in a close feedback with the magnetic separation study in order to find a compromise between biological functionalities of the adsorbed molecular layer and magnetic separation efficiency.
dc.description.sponsorshipMagnéto-Chimiothérapie : Modélisation de la Délivrance Induite par Champ Magnétique Radiofréquence d'Anticancéreux par des Nano-Vésicules Polymères et Suivi par IRM d'un Modèle de Glioblastome - ANR-13-BS08-0017
dc.description.sponsorshipIdex UCA JEDI - 15-IDEX-0001
dc.description.sponsorshipDéveloppment d'une infrastructure française distribuée coordonnée - ANR-10-INBS-04-01/10-INBS-0004
dc.language.isoen
dc.publisherMDPI
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.eniron oxide nanoparticles
dc.subject.ennanoflowers
dc.subject.enmagnetic separation
dc.subject.engrafted layer
dc.title.enKinetics of Aggregation and Magnetic Separation of Multicore Iron Oxide Nanoparticles: Effect of the Grafted Layer Thickness
dc.typeArticle de revue
dc.identifier.doi10.3390/nano8080623
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
dc.subject.halChimie/Matériaux
dc.subject.halChimie/Polymères
dc.description.sponsorshipEuropeMultifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy
bordeaux.journalNanomaterials
bordeaux.page623
bordeaux.volume8
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.issue8
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
bordeaux.peerReviewedoui
hal.identifierhal-01858029
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01858029v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Nanomaterials&amp;rft.date=2018&amp;rft.volume=8&amp;rft.issue=8&amp;rft.spage=623&amp;rft.epage=623&amp;rft.eissn=2076-4991&amp;rft.issn=2076-4991&amp;rft.au=EZZAIER,%20Hinda&amp;ALVES%20MARINS,%20Jessica&amp;CLAUDET,%20Cyrille&amp;HEMERY,%20Gauvin&amp;SANDRE,%20Olivier&amp;rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record