Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorTOUYA, N.
dc.contributor.authorAL-BOURGOL, S.
dc.contributor.authorGEMINI, L.
dc.contributor.authorKLING, R.
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorDEVILLARD, R.
dc.contributor.authorDESIGNAUX, Theo
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
hal.structure.identifierCHU Bordeaux
dc.contributor.authorKEROUREDAN, Olivia
dc.date.accessioned2024-06-04T14:29:47Z
dc.date.available2024-06-04T14:29:47Z
dc.date.issued2023
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/200262
dc.description.abstractEnThe laser patterning of implant materials for bone tissue engineering purposes has proven to be a promising technique for controlling cell properties such as adhesion or differentiation, resulting in enhanced osteointegration. However, the possibility of patterning the bone tissue side interface to generate microstructure effects has never been investigated. In the present study, three different laser-generated patterns were machined on the bone surface with the aim of identifying the best surface morphology compatible with osteogenic-related cell recolonization. The laser-patterned bone tissue was characterized by scanning electron microscopy and confocal microscopy in order to obtain a comprehensive picture of the bone surface morphology. The cortical bone patterning impact on cell compatibility and cytoskeleton rearrangement on the patterned surfaces was assessed using Stromal Cells from the Apical Papilla (SCAPs). The results indicated that laser machining had no detrimental effect on consecutively seeded cell metabolism. Orientation assays revealed that patterns with larger hatch distances were correlated with higher cell cytoskeletal conformation to the laser-machined patterns. To the best of our knowledge, this study is the first to consider and evaluate bone as a biological interface that can be engineered for improvement. Further investigations should focus on the in vivo implications of this direct patterning. © 2023 by the authors.
dc.language.isoENen_US
dc.title.enBone Laser Patterning to Decipher Cell Organization
dc.typeArticle de revueen_US
dc.identifier.doi10.3390/bioengineering10020155en_US
dc.subject.halSciences du Vivant [q-bio]en_US
bordeaux.journalBioengineeringen_US
bordeaux.volume10en_US
bordeaux.hal.laboratoriesBioingénierie Tissulaire (BioTis) - U1026en_US
bordeaux.issue2en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINSERMen_US
bordeaux.institutionCHU de Bordeauxen_US
bordeaux.institutionInstitut Bergoniéen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04600990
hal.version1
hal.date.transferred2024-06-04T14:29:48Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Bioengineering&rft.date=2023&rft.volume=10&rft.issue=2&rft.au=TOUYA,%20N.&AL-BOURGOL,%20S.&GEMINI,%20L.&KLING,%20R.&DEVILLARD,%20R.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée