Afficher la notice abrégée

dc.rights.licenseopen
hal.structure.identifierUniv Basque Country, Elekt & Elekt Saila, Bilbao
dc.contributor.authorGARAIO, Eneko
hal.structure.identifierUniv Basque Country, Elekt & Elekt Saila, Bilbao
dc.contributor.authorCOLLANTES, Juan Mari
hal.structure.identifierBCMaterials Basque Center for Materials, Applications and Nanostructures
dc.contributor.authorGARCIA, Jose Angel
hal.structure.identifierUniv Basque Country, Elekt & Elekt Saila, Bilbao
dc.contributor.authorPLAZAOLA, Fernando
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 3 LCPO : Polymer Self-Assembly & Life Sciences
dc.contributor.authorSANDRE, Olivier
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2015
dc.identifier.issn0003-6951
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/19997
dc.description.abstractEnMagnetic fluid hyperthermia is a promising cancer therapy in which magnetic nanoparticles act as heat sources activated by an external AC magnetic field. The nanoparticles, located near or inside the tumor, absorb energy from the magnetic field and then heat up the cancerous tissues. During the hyperthermia treatment, it is crucial to control the temperature of different tissues: too high temperature can cause undesired damage in healthy tissues through an uncontrolled necrosis. However, the current thermometry in magnetic hyperthermia presents some important technical problems. The widely used optical fiber thermometers only provide the temperature in a discrete set of spatial points. Moreover, surgery is required to locate these probes in the correct place. In this scope, we propose here a method to measure the temperature of a magnetic sample. The approach relies on the intrinsic properties of the magnetic nanoparticles because it is based on monitoring the thermal dependence of the high order harmonic phases of the nanoparticle dynamic magnetization. The method is non-invasive and it does not need any additional probe or sensor attached to the magnetic nanoparticles. Moreover, this method has the potential to be used together with the magnetic particle imaging technique to map the spatial distribution of the temperature.
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.subject.enMAGNETIC NANOPARTICLES
dc.subject.enSPECIFIC ABSORPTION RATE
dc.subject.enHYPERTHERMIA
dc.subject.enMAGNETIC FIELD
dc.subject.enPOWER
dc.subject.enMONODISPERSE
dc.subject.enTEMPERATURE-DEPENDENCE
dc.subject.enTHERAPY
dc.subject.enMAGNETIC FLUIDS
dc.title.enHarmonic phases of the nanoparticle magnetization: An intrinsic temperature probe
dc.typeArticle de revue
dc.identifier.doi10.1063/1.4931457
dc.subject.halSciences de l'ingénieur [physics]/Electromagnétisme
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
dc.subject.halSciences de l'ingénieur [physics]/Matériaux
dc.subject.halSciences de l'ingénieur [physics]/Electronique
bordeaux.journalApplied Physics Letters
bordeaux.pageArt Nb 123103
bordeaux.volume107
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.issue12
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
bordeaux.peerReviewedoui
hal.identifierhal-01383239
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01383239v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Physics%20Letters&rft.date=2015&rft.volume=107&rft.issue=12&rft.spage=Art%20Nb%20123103&rft.epage=Art%20Nb%20123103&rft.eissn=0003-6951&rft.issn=0003-6951&rft.au=GARAIO,%20Eneko&COLLANTES,%20Juan%20Mari&GARCIA,%20Jose%20Angel&PLAZAOLA,%20Fernando&SANDRE,%20Olivier&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée