Afficher la notice abrégée

dc.rights.licenseopen
dc.contributor.authorHOLMES, Natalie
dc.contributor.authorMARKS, Melissa
dc.contributor.authorCAVE, James
dc.contributor.authorFERON, Krishna
dc.contributor.authorBARR, Matthew
dc.contributor.authorFAHY, Adam
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorSHARMA, Anirudh
dc.contributor.authorPAN, Xun
dc.contributor.authorKILCOYNE, David
dc.contributor.authorZHOU, Xiaojing
hal.structure.identifierFood Research Division
dc.contributor.authorLEWIS, David
hal.structure.identifierDepartment of Mathematical Sciences
dc.contributor.authorANDERSSON, Mats
dc.contributor.authorVAN STAM, Jan
dc.contributor.authorWALKER, Alison
dc.contributor.authorMOONS, Ellen
dc.contributor.authorBELCHER, Warwick
dc.contributor.authorDASTOOR, Paul
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2018
dc.identifier.issn0897-4756
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/19944
dc.description.abstractEnNanoparticle organic photovoltaics, a subfield of organic photovoltaics (OPV), has attracted increasing interest in recent years due to the eco-friendly fabrication of solar modules afforded by colloidal ink technology. Importantly, using this approach it is now possible to engineer the microstructure of the light absorbing/charge generating layer of organic photovoltaics; decoupling film morphology from film deposition. In this study, single-component nanoparticles of poly(3-hexylthiophene) (P3HT) and phenyl-C61 butyric acid methyl ester (PC61BM) were synthesized and used to generate a two-phase microstructure with control over domain size prior to film deposition. Scanning transmission X-ray microscopy (STXM) and electron microscopy were used to characterize the thin film morphology. Uniquely, the measured microstructure was a direct input for a nanoscopic kinetic Monte Carlo (KMC) model allowing us to assess exciton transport properties that are experimentally inaccessible in these singlecomponent particles. Photoluminescence, UV−vis spectroscopy measurements, and KMC results of the nanoparticle thin films enabled the calculation of an experimental exciton dissociation efficiency (ηED) of 37% for the two-phase microstructure. The glass transition temperature (Tg) of the materials was characterized with dynamic mechanical thermal analysis (DMTA) and thermal nnealing led to an increase in ηED to 64% due to an increase in donor−acceptor interfaces in the thin film from both sintering of neighboring opposite-type particles in addition to the generation of a third mixed phase from diffusion of PC61BM into amorphous P3HT domains. As such, this study demonstrates the higher level of control over donor−acceptor film morphology enabled by customizing nanoparticulate colloidal inks, where the optimal three-phase film morphology for an OPV photoactive layer can be designed and engineered.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.subject.enNanoparticles
dc.subject.enPolymer solar cells
dc.subject.enEco-friendly
dc.title.enEngineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications
dc.typeArticle de revue
dc.subject.halChimie/Polymères
dc.subject.halSciences de l'ingénieur [physics]/Optique / photonique
dc.subject.halSciences de l'ingénieur [physics]/Energie électrique
bordeaux.journalChemistry of Materials
bordeaux.page6521-6531
bordeaux.volume30
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.issue18
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
bordeaux.peerReviewedoui
hal.identifierhal-01940601
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01940601v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemistry%20of%20Materials&rft.date=2018&rft.volume=30&rft.issue=18&rft.spage=6521-6531&rft.epage=6521-6531&rft.eissn=0897-4756&rft.issn=0897-4756&rft.au=HOLMES,%20Natalie&MARKS,%20Melissa&CAVE,%20James&FERON,%20Krishna&BARR,%20Matthew&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée