Afficher la notice abrégée

dc.rights.licenseopen
hal.structure.identifierSorbonne Université - Faculté de Physique [UFR 925]
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierDepartment of Mechanical Engineering [University College of London]
dc.contributor.authorAOUANE, Kamel
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 3 LCPO : Polymer Self-Assembly & Life Sciences
dc.contributor.authorSANDRE, Olivier
dc.contributor.authorFORD, Ian
dc.contributor.authorELSON, Tim
hal.structure.identifierDepartment of Mechanical Engineering [University College of London]
dc.contributor.authorNIGHTINGALE, Chris
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2018
dc.identifier.issn2411-5134
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/19942
dc.description.abstractEnSeveral studies have involved a combination of heat and gravitational energy exchanges to create novel heat engines. A common theoretical framework is developed here to describe thermogravitational cycles which have the same efficiencies as the Carnot, Rankine, or Brayton cycles. Considering a working fluid enclosed in a balloon inside a column filled with a transporting fluid, a cycle is composed of four steps. Starting from the top of the column, the balloon goes down by gravity, receives heat from a hot source at the bottom, then rises and delivers heat to a cold source at the top. Unlike classic power cycles which need external work to operate the compressor, thermogravitational cycles can operate as a “pure power cycle” where no external work is needed to drive the cycle. To illustrate this concept, the prototype of a thermogravitational electrical generator is presented. It uses a hot source of average temperature near 57 °C and relies on the gravitational energy exchanges of an organic fluorinated fluid inside a balloon attached to a magnetic marble to produce an electromotive force of 50 mV peak to peak by the use of a linear alternator. This heat engine is well suited to be operated using renewable energy sources such as geothermal gradients or focused sunlight.
dc.language.isoen
dc.publisherMDPI
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enthermogravitational cycle
dc.subject.enthermogravitational electric generator
dc.subject.enpure power cycle
dc.subject.enCarnot cycle
dc.subject.enRankine cycle
dc.subject.enBrayton cycles
dc.subject.engravitational force
dc.subject.encompression and expansion
dc.subject.enwaste heat harvesting
dc.subject.engeothermal energy harvesting
dc.subject.ensolar energy harvesting
dc.title.enThermogravitational Cycles: Theoretical Framework and Example of an Electric Thermogravitational Generator Based on Balloon Inflation/Deflation
dc.typeArticle de revue
dc.identifier.doi10.3390/inventions3040079
dc.subject.halPhysique [physics]/Mécanique [physics]/Thermique [physics.class-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Physique Générale [physics.gen-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Enseignement de la physique [physics.ed-ph]
dc.identifier.arxiv1511.00640
bordeaux.journalInventions
bordeaux.page79
bordeaux.volume3
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.issue4
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
bordeaux.peerReviewedoui
hal.identifierhal-01941436
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01941436v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Inventions&rft.date=2018&rft.volume=3&rft.issue=4&rft.spage=79&rft.epage=79&rft.eissn=2411-5134&rft.issn=2411-5134&rft.au=AOUANE,%20Kamel&SANDRE,%20Olivier&FORD,%20Ian&ELSON,%20Tim&NIGHTINGALE,%20Chris&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée