Show simple item record

hal.structure.identifierUniversité Grenoble Alpes [2016-2019] [UGA [2016-2019]]
hal.structure.identifierLaboratoire de glaciologie et géophysique de l'environnement [LGGE]
dc.contributor.authorCRICHTON, Katherine
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorBOUTTES, Nathaelle
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
hal.structure.identifierModélisation du climat [CLIM]
hal.structure.identifierVrije Universiteit Amsterdam [Amsterdam] [VU]
dc.contributor.authorROCHE, Didier M.
hal.structure.identifierUniversité Grenoble Alpes [2016-2019] [UGA [2016-2019]]
hal.structure.identifierLaboratoire de glaciologie et géophysique de l'environnement [LGGE]
dc.contributor.authorCHAPPELLAZ, Jerome
hal.structure.identifierLaboratoire de glaciologie et géophysique de l'environnement [LGGE]
hal.structure.identifierUniversité Grenoble Alpes [2016-2019] [UGA [2016-2019]]
dc.contributor.authorKRINNER, Gerhard
dc.date.accessioned2024-04-22T07:57:40Z
dc.date.available2024-04-22T07:57:40Z
dc.date.issued2016-08
dc.identifier.issn1752-0894
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/199261
dc.description.abstractEnThe atmospheric concentration of CO2 increased from 190 to 280 ppm between the last glacial maximum 21,000 years ago and the pre-industrial era1, 2. This CO2 rise and its timing have been linked to changes in the Earth’s orbit, ice sheet configuration and volume, and ocean carbon storage2, 3. The ice-core record of δ13CO2 (refs 2,4) in the atmosphere can help to constrain the source of carbon, but previous modelling studies have failed to capture the evolution of δ13CO2 over this period5. Here we show that simulations of the last deglaciation that include a permafrost carbon component can reproduce the ice core records between 21,000 and 10,000 years ago. We suggest that thawing permafrost, due to increasing summer insolation in the northern hemisphere, is the main source of CO2 rise between 17,500 and 15,000 years ago, a period sometimes referred to as the Mystery Interval6. Together with a fresh water release into the North Atlantic, much of the CO2 variability associated with the Bølling-Allerod/Younger Dryas period ~15,000 to ~12,000 years ago can also be explained. In simulations of future warming we find that the permafrost carbon feedback increases global mean temperature by 10–40% relative to simulations without this feedback, with the magnitude of the increase dependent on the evolution of anthropogenic carbon emissions.
dc.language.isoen
dc.publisherNature Publishing Group
dc.subject.enCarbon cycle
dc.subject.enClimate change
dc.subject.enCryospheric science
dc.subject.enPalaeoceanography
dc.subject.enPalaeoclimate
dc.title.enPermafrost carbon as a missing link to explain CO2 changes during the last deglaciation
dc.typeArticle de revueen_US
dc.identifier.doi10.1038/ngeo2793
dc.subject.halSciences de l'environnement
bordeaux.journalNature Geoscienceen_US
bordeaux.page683–686
bordeaux.volume9
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
bordeaux.import.sourcehal
hal.identifierinsu-01389427
hal.version1
hal.popularnon
hal.audienceInternationale
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Geoscience&rft.date=2016-08&rft.volume=9&rft.spage=683%E2%80%93686&rft.epage=683%E2%80%93686&rft.eissn=1752-0894&rft.issn=1752-0894&rft.au=CRICHTON,%20Katherine&BOUTTES,%20Nathaelle&ROCHE,%20Didier%20M.&CHAPPELLAZ,%20Jerome&KRINNER,%20Gerhard&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record