Model-based adaptive filtering of harmonic perturbations applied to high-frequency noninvasive valvometry
dc.rights.license | open | en_US |
hal.structure.identifier | Finite-time control and estimation for distributed systems [VALSE] | |
dc.contributor.author | BARROSO, Nelson | |
hal.structure.identifier | Finite-time control and estimation for distributed systems [VALSE] | |
dc.contributor.author | USHIROBIRA, Rosane | |
hal.structure.identifier | Finite-time control and estimation for distributed systems [VALSE] | |
dc.contributor.author | EFIMOV, Denis | |
hal.structure.identifier | Environnements et Paléoenvironnements OCéaniques [EPOC] | |
dc.contributor.author | SOW, Mohamedou | |
hal.structure.identifier | Environnements et Paléoenvironnements OCéaniques [EPOC] | |
dc.contributor.author | MASSABUAU, Jean Charles | |
dc.date.accessioned | 2024-04-16T12:57:58Z | |
dc.date.available | 2024-04-16T12:57:58Z | |
dc.date.conference | 2020-07 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/199105 | |
dc.description.abstractEn | In this paper, a model-based adaptive filter is used to suppress electrical noise in a high-frequency noninvasive valvometry device, which is part of an autonomous biosensor system using bivalve mollusks valve-activity measurements for ecological monitoring purposes. The proposed model-based adaptive filter uses the dynamic regressor extension and mixing method to allow a decoupled estimation of the parameters. Once the desired regression form of the output model is obtained, a fixed-time estimation approach is used to identify its parameters. By applying these two techniques, a flexible filter structure is obtained with the property of retaining the major relevant components of interest of the original valve-activity signals, even in the case when the unwanted signal frequency components are in the same frequency range as the useful variables. | |
dc.description.sponsorship | Surveillance de la qualité de eaux côtières à l'aide de molusques bivalves bio-capteurs - ANR-15-CE04-0002 | en_US |
dc.language.iso | EN | en_US |
dc.subject.en | Adaptive filtering | |
dc.subject.en | Fault detection | |
dc.subject.en | Parameter identification | |
dc.subject.en | Biosensors | |
dc.subject.en | Ecological monitoring | |
dc.title.en | Model-based adaptive filtering of harmonic perturbations applied to high-frequency noninvasive valvometry | |
dc.type | Communication dans un congrès | en_US |
dc.subject.hal | Sciences de l'ingénieur [physics]/Automatique / Robotique | en_US |
bordeaux.hal.laboratories | EPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | CNRS | en_US |
bordeaux.conference.title | IFAC 2020 - 21st IFAC World Congress | en_US |
bordeaux.conference.city | Berlin | en_US |
bordeaux.import.source | hal | |
hal.identifier | hal-02887927 | |
hal.version | 1 | |
hal.invited | non | en_US |
hal.proceedings | oui | en_US |
hal.popular | non | en_US |
hal.audience | Internationale | en_US |
hal.export | false | |
workflow.import.source | hal | |
dc.rights.cc | Pas de Licence CC | en_US |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BARROSO,%20Nelson&USHIROBIRA,%20Rosane&EFIMOV,%20Denis&SOW,%20Mohamedou&MASSABUAU,%20Jean%20Charles&rft.genre=unknown |