Afficher la notice abrégée

hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorCOULAUD, Olivier
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorFORTIN, Pierre
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorROMAN, Jean
dc.date.accessioned2024-04-15T09:57:07Z
dc.date.available2024-04-15T09:57:07Z
dc.date.issued2008
dc.identifier.issn0021-9991
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198890
dc.description.abstractEnThe multipole-to-local (M2L) operator is the most time-consuming part of the far field computation in the Fast Multipole Method for Laplace equation. Its natural expression, though commonly used, does not respect a sharp error bound: we here first prove the correctness of a second expression. We then propose a matrix formulation implemented with BLAS (Basic Linear Algebra Subprograms) routines in order to speed up its computation for these two expressions. We also introduce special data storages in memory to gain greater computational efficiency. This BLAS scheme is finally compared, for uniform distributions, to other M2L improvements such as block FFT, rotations and plane wave expansions. When considering runtime, extra memory storage, numerical stability and common precisions for Laplace equation, the BLAS version appears as the best one.
dc.language.isoen
dc.publisherElsevier
dc.subject.enFast Multipole Methods
dc.subject.enLaplace equation
dc.subject.enBLAS routines
dc.subject.enerror bound
dc.subject.enFast Fourier Transform
dc.subject.enrotations
dc.subject.enplane waves
dc.subject.enuniform distribution
dc.title.enHigh performance BLAS formulation of the multipole-to-local operator in the Fast Multipole Method
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2007.09.027
dc.subject.halInformatique [cs]/Analyse numérique [cs.NA]
dc.subject.halInformatique [cs]/Algorithme et structure de données [cs.DS]
bordeaux.journalJournal of Computational Physics
bordeaux.page1836-1862
bordeaux.volume227
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierinria-00000957
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00000957v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2008&rft.volume=227&rft.issue=3&rft.spage=1836-1862&rft.epage=1836-1862&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=COULAUD,%20Olivier&FORTIN,%20Pierre&ROMAN,%20Jean&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée