On uniformly high-order accurate residual distribution schemes for advection-diffusion.
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Algorithms and high performance computing for grand challenge applications [SCALAPPLIX] | |
dc.contributor.author | RICCHIUTO, Mario | |
hal.structure.identifier | von Karman Institute for Fluid Dynamics [VKI] | |
dc.contributor.author | VILLEDIEU, N. | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Algorithms and high performance computing for grand challenge applications [SCALAPPLIX] | |
dc.contributor.author | ABGRALL, Remi | |
hal.structure.identifier | von Karman Institute for Fluid Dynamics [VKI] | |
dc.contributor.author | DECONINCK, H. | |
dc.date.accessioned | 2024-04-15T09:51:13Z | |
dc.date.available | 2024-04-15T09:51:13Z | |
dc.date.issued | 2008 | |
dc.identifier.issn | 0377-0427 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/198414 | |
dc.description.abstractEn | We discuss preliminary results on the construction of uniformly high-order residual distribution $(\cal RD)$ type discretizations for steady advection-diffusion on unstructured grids. A properly designed scaling of the $(\cal RD)$ upwind stabilization with the physical viscosity allows to obtain schemes with uniform and arbitrary accuracy, on a very compact stencil. Second- and third-order examples are given to illustrate the potential of the approach. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | residual distribution | |
dc.subject.en | very high-order schemes | |
dc.subject.en | compact schemes | |
dc.subject.en | numerical examples | |
dc.subject.en | finite elements | |
dc.subject.en | steady advection-diffusion | |
dc.subject.en | upwind stabilization | |
dc.title.en | On uniformly high-order accurate residual distribution schemes for advection-diffusion. | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.cam.2006.03.059 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Journal of Computational and Applied Mathematics | |
bordeaux.page | 547-556 | |
bordeaux.volume | 215 | |
bordeaux.hal.laboratories | Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | inria-00403700 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//inria-00403700v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20and%20Applied%20Mathematics&rft.date=2008&rft.volume=215&rft.issue=2&rft.spage=547-556&rft.epage=547-556&rft.eissn=0377-0427&rft.issn=0377-0427&rft.au=RICCHIUTO,%20Mario&VILLEDIEU,%20N.&ABGRALL,%20Remi&DECONINCK,%20H.&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |