Afficher la notice abrégée

hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorCHEVALIER, Cédric
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorHER, Jun-Ho
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorPELLEGRINI, François
dc.date.accessioned2024-04-15T09:50:38Z
dc.date.available2024-04-15T09:50:38Z
dc.date.created2008-06-18
dc.date.issued2008-06-18
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198359
dc.descriptionIBM invited Seminar, Zürich
dc.description.abstractEnGraph partitioning is an ubiquitous technique which has applications in many fields of computer science and engineering. It is mostly used to help solving domain-dependent optimization problems modeled in terms of weighted or unweighted graphs, where finding good solutions amounts to computing, eventually recursively in a divide-and-conquer framework, small vertex or edge cuts that balance evenly the weights of the graph parts. Because there always exists large problem graphs which cannot fit in the memory of sequential computers and cost too much to partition, parallel graph partitioning tools have been developed. PT-Scotch is another attempt to provide a simple and efficient library for parallel graph partitioning and ordering. Its goal is to provide efficient parallel tools to partition graphs with sizes up to several billion vertices, distributed over a thousand processors. This deliberately ambitious goal aims at tackling frontally scalability and efficiency issues. As for many algorithmic problems, preserving the quality of produced solutions when going parallel is a hard task, because state-of-the-art algorithms used in this context, such as Fiduccia-Mattheyses-like local optimization algorithms, are intrinsically sequential. This talk will emphasize on the algorithmic challenges induced by parallelism for graph partitioning, by first exposing the sequential framework, and then the parallel solutions that we devised for several of its key algorithms.
dc.description.sponsorshipSOLveurs et SimulaTIons en Calculs Extrême - ANR-06-CIS6-0010
dc.language.isoen
dc.title.enThe PT-Scotch project: purpose, algorithms, current results
dc.typeAutre document
dc.subject.halInformatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00410331
hal.version1
hal.popularnon
hal.audienceNon spécifiée
dc.subject.itScotch
dc.subject.itparallel graph partitioning
dc.subject.itparallel sparse matrix ordering
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00410331v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2008-06-18&rft.au=CHEVALIER,%20C%C3%A9dric&HER,%20Jun-Ho&PELLEGRINI,%20Fran%C3%A7ois&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée