Afficher la notice abrégée

hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
hal.structure.identifierInstitut universitaire de France [IUF]
dc.contributor.authorGAVOILLE, Cyril
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorGODFROY, Quentin
hal.structure.identifierLaboratoire d'informatique Algorithmique : Fondements et Applications [LIAFA]
hal.structure.identifierNetworks, Graphs and Algorithms [GANG]
dc.contributor.authorVIENNOT, Laurent
dc.contributor.editorBoaz Patt-Shamir, Tinaz Ekim
dc.date.accessioned2024-04-15T09:48:10Z
dc.date.available2024-04-15T09:48:10Z
dc.date.issued2010
dc.date.conference2010-06-07
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198160
dc.description.abstractEnThis paper concerns graph spanners that approximate multipaths between pair of vertices of an undirected graphs with $n$ vertices. Classically, a spanner $H$ of stretch $s$ for a graph $G$ is a spanning subgraph such that the distance in $H$ between any two vertices is at most $s$ times the distance in $G$. We study in this paper spanners that approximate short cycles, and more generally $p$ edge-disjoint paths with $p>1$, between any pair of vertices. For every unweighted graph $G$, we construct a $2$-multipath $3$-spanner of $O(n^3/2)$ edges. In other words, for any two vertices $u,v$ of $G$, the length of the shortest cycle (with no edge replication) traversing $u,v$ in the spanner is at most thrice the length of the shortest one in $G$. This construction is shown to be optimal in term of stretch and of size. In a second construction, we produce a $2$-multipath $(2,8)$-spanner of $O(n^3/2)$ edges, i.e., the length of the shortest cycle traversing any two vertices have length at most twice the shortest length in $G$ plus eight. For arbitrary $p$, we observe that, for each integer $k\ge 1$, every weighted graph has a $p$-multipath $p(2k-1)$-spanner with $O(p n^1+1/k)$ edges, leaving open the question whether, with similar size, the stretch of the spanner can be reduced to $2k-1$ for all $p>1$.
dc.language.isoen
dc.publisherSpringer
dc.title.enMultipath Spanners
dc.typeCommunication dans un congrès
dc.identifier.doi10.1007/978-3-642-13284-1_17
dc.subject.halInformatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
dc.subject.halInformatique [cs]/Réseaux et télécommunications [cs.NI]
bordeaux.page211-223
bordeaux.volume6058
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleStructural Information and Communication Complexity, 17th International Colloquium (SIROCCO)
bordeaux.countryTR
bordeaux.conference.citySirince
bordeaux.peerReviewedoui
hal.identifierinria-00547869
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2010-06-11
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00547869v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2010&rft.volume=6058&rft.spage=211-223&rft.epage=211-223&rft.au=GAVOILLE,%20Cyril&GODFROY,%20Quentin&VIENNOT,%20Laurent&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée