Mostrar el registro sencillo del ítem

hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorBEAUMONT, Olivier
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorBONICHON, Nicolas
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
dc.contributor.authorEYRAUD-DUBOIS, Lionel
hal.structure.identifierLaboratoire de l'Informatique du Parallélisme [LIP]
hal.structure.identifierOptimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
dc.contributor.authorMARCHAL, Loris
dc.contributor.editorIEEE
dc.date.accessioned2024-04-15T09:46:52Z
dc.date.available2024-04-15T09:46:52Z
dc.date.created2011-09-30
dc.date.issued2012
dc.date.conference2012-05
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198046
dc.description.abstractEnMalleable tasks are jobs that can be scheduled with preemptions on a varying number of resources. We focus on the special case of work-preserving malleable tasks, for which the area of the allocated resources does not depend on the allocation and is equal to the sequential processing time. Moreover, we assume that the number of resources allocated to each task at each time instant is bounded. We consider both the clairvoyant and non-clairvoyant cases, and we focus on minimizing the weighted sum of completion times. In the weighted non-clairvoyant case, we propose an approximation algorithm whose ratio (2) is the same as in the unweighted non-clairvoyant case. In the clairvoyant case, we provide a normal form for the schedule of such malleable tasks, and prove that any valid schedule can be turned into this normal form, based only on the completion times of the tasks. We show that in these normal form schedules, the number of preemptions per task is bounded by 3 on average. At last, we analyze the performance of greedy schedules, and prove that optimal schedules are greedy for a special case of homogeneous instances. We conjecture that there exists an optimal greedy schedule for all instances, which would greatly simplify the study of this problem. Finally, we explore the complexity of the problem restricted to homogeneous instances, which is still open despite its simplicity.
dc.description.sponsorshipSimulation extrêmement extensible avec SimGrid - ANR-08-SEGI-0022
dc.language.isoen
dc.subject.enScheduling
dc.subject.enIndependent Tasks Scheduling
dc.subject.enApproximation Algorithms
dc.subject.enNon Clairvoyant Algorithms
dc.subject.enWeighted Mean Completion Time
dc.subject.enMalleable Tasks
dc.title.enMinimizing Weighted Mean Completion Time for Malleable Tasks Scheduling
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleIPDPS 2012, 26th IEEE International Parallel & Distributed Processing Symposium
bordeaux.countryCN
bordeaux.conference.cityShangai
bordeaux.peerReviewedoui
hal.identifierinria-00564056
hal.version1
hal.invitednon
hal.proceedingsoui
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00564056v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2012&rft.au=BEAUMONT,%20Olivier&BONICHON,%20Nicolas&EYRAUD-DUBOIS,%20Lionel&MARCHAL,%20Loris&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem