Node-Disjoint Multipath Spanners and their Relationship with Fault-Tolerant Spanners
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE] | |
hal.structure.identifier | Institut universitaire de France [IUF] | |
dc.contributor.author | GAVOILLE, Cyril | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | GODFROY, Quentin | |
hal.structure.identifier | Networks, Graphs and Algorithms [GANG] | |
dc.contributor.author | VIENNOT, Laurent | |
dc.contributor.editor | Antonio Fernàndez Anta, Giuseppe Lipari and Matthieu Roy | |
dc.date.accessioned | 2024-04-15T09:46:20Z | |
dc.date.available | 2024-04-15T09:46:20Z | |
dc.date.issued | 2011 | |
dc.date.conference | 2011-12-13 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/197995 | |
dc.description.abstractEn | Motivated by multipath routing, we introduce a multi-connected variant of spanners. For that purpose we introduce the $p$-multipath cost between two nodes $u$ and $v$ as the minimum weight of a collection of $p$ internally vertex-disjoint paths between $u$ and $v$. Given a weighted graph $G$, a subgraph $H$ is a $p$-multipath $s$-spanner if for all $u,v$, the $p$-multipath cost between $u$ and $v$ in $H$ is at most $s$ times the $p$-multipath cost in $G$. The $s$ factor is called the stretch. Building upon recent results on fault-tolerant spanners, we show how to build $p$-multipath spanners of constant stretch and of $\tO(n^{1+1/k})$ edges\footnote{Tilde-$O$ notation is similar to Big-$O$ up to poly-logarithmic factors in $n$.}, for fixed parameters $p$ and $k$, $n$ being the number of nodes of the graph. Such spanners can be constructed by a distributed algorithm running in $O(k)$ rounds. Additionally, we give an improved construction for the case $p=k=2$. Our spanner $H$ has $O(n^{3/2})$ edges and the $p$-multipath cost in $H$ between any two node is at most twice the corresponding one in $G$ plus $O(W)$, $W$ being the maximum edge weight. | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.source.title | 15th International Conference on Principles of Distributed Systems (OPODIS) | |
dc.title.en | Node-Disjoint Multipath Spanners and their Relationship with Fault-Tolerant Spanners | |
dc.type | Communication dans un congrès | |
dc.identifier.doi | 10.1007/978-3-642-25873-2_11 | |
dc.subject.hal | Informatique [cs]/Algorithme et structure de données [cs.DS] | |
dc.identifier.arxiv | 1109.2696 | |
bordeaux.page | 143-158 | |
bordeaux.volume | 7109 | |
bordeaux.hal.laboratories | Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | OPODIS'11 - 15th International Conference on Principles of Distributed Systems | |
bordeaux.country | FR | |
bordeaux.title.proceeding | 15th International Conference on Principles of Distributed Systems (OPODIS) | |
bordeaux.conference.city | Toulouse | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00651825 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.conference.end | 2011-12-16 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00651825v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=15th%20International%20Conference%20on%20Principles%20of%20Distributed%20Systems%20(OPODIS)&rft.date=2011&rft.volume=7109&rft.spage=143-158&rft.epage=143-158&rft.au=GAVOILLE,%20Cyril&GODFROY,%20Quentin&VIENNOT,%20Laurent&rft.genre=unknown |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |