Afficher la notice abrégée

hal.structure.identifierLinear logic, proof networks and categorial grammars [CALLIGRAMME]
dc.contributor.authorPOGODALLA, Sylvain
hal.structure.identifierLinguistic signs, grammar and meaning: computational logic for natural language [SIGNES]
dc.contributor.authorRETORÉ, Christian
dc.date.accessioned2024-04-15T09:45:12Z
dc.date.available2024-04-15T09:45:12Z
dc.date.created2004-12
dc.date.issued2004
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197896
dc.description.abstractEnThis paper provides a definition of proof-nets for non-commutative linear logic (cyclic linear logic and Lambek calculus) where there are no links, that are small graphs representing the connectives. Instead of a tree like representation with links, the formula is depicted as a graph representing the conclusion up to the algebraic properties of the connectives. In the commutative case the formula is viewed as a cograph. In the non-commutative case it is a more complicated kind of graph which is, roughly speaking, a directed cograph. The criterion consists in the commutative condition plus a bracketing condition.
dc.language.isoen
dc.subject.enproof theory
dc.subject.enlinear logic
dc.subject.engraph theory
dc.subject.enperfect matching
dc.subject.encographs
dc.subject.encyclic orders
dc.subject.encomputational linguistics
dc.subject.enlambek calculus
dc.subject.encategorial grammars
dc.title.enHandsome Non-Commutative Proof-Nets: perfect matchings, series-parallel orders and Hamiltonian circuits
dc.typeRapport
dc.subject.halInformatique [cs]/Autre [cs.OH]
bordeaux.page25
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionINRIA
bordeaux.type.reportrr
hal.identifierinria-00071248
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00071248v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2004&rft.spage=25&rft.epage=25&rft.au=POGODALLA,%20Sylvain&RETOR%C3%89,%20Christian&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée