The Stretch Factor of ${L}_1$- and ${L}_\infty$-{D}elaunay Triangulations
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE] | |
dc.contributor.author | BONICHON, Nicolas | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE] | |
hal.structure.identifier | Institut universitaire de France [IUF] | |
dc.contributor.author | GAVOILLE, Cyril | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE] | |
dc.contributor.author | HANUSSE, Nicolas | |
hal.structure.identifier | School of Computer Science, Telecommunications, and Information Systems [DePaul] [CTI] | |
hal.structure.identifier | School of Computing [DePaul] [SOC] | |
dc.contributor.author | PERKOVIC, Ljubomir | |
dc.date.accessioned | 2024-04-15T09:44:50Z | |
dc.date.available | 2024-04-15T09:44:50Z | |
dc.date.created | 2012 | |
dc.date.issued | 2012-09 | |
dc.date.conference | 2012-09 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/197876 | |
dc.description.abstractEn | In this paper we determine the stretch factor of L1-Delaunay and L∞-Delaunay triangulations, and we show that it is equal to √(4 + 2√2) ≈ 2.61. Between any two points x, y of such triangulations, we construct a path whose length is no more than √(4 + 2√2) times the Euclidean distance between x and y, and this bound is the best possible. This definitively improves the 25-year old bound of triangulations of √10 by Chew (SoCG '86). This is the first time the stretch factor of the Lp-Delaunay for any real p ≥ 1, is determined exactly. | |
dc.description.sponsorship | Calculabilité et complexité en distribué - ANR-11-BS02-0014 | |
dc.language.iso | en | |
dc.source.title | 20th Annual European Symposium on Algorithms (ESA) | |
dc.title.en | The Stretch Factor of ${L}_1$- and ${L}_\infty$-{D}elaunay Triangulations | |
dc.type | Communication dans un congrès | |
dc.subject.hal | Informatique [cs]/Algorithme et structure de données [cs.DS] | |
bordeaux.page | 205-216 | |
bordeaux.volume | 7501 of Lecture Notes in Computer Science | |
bordeaux.hal.laboratories | Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | 20th Annual European Symposium on Algorithms (ESA) | |
bordeaux.country | SI | |
bordeaux.title.proceeding | 20th Annual European Symposium on Algorithms (ESA) | |
bordeaux.conference.city | Ljubljana | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00725844 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00725844v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=20th%20Annual%20European%20Symposium%20on%20Algorithms%20(ESA)&rft.date=2012-09&rft.volume=7501%20of%20Lecture%20Notes%20in%20Computer%20Science&rft.spage=205-216&rft.epage=205-216&rft.au=BONICHON,%20Nicolas&GAVOILLE,%20Cyril&HANUSSE,%20Nicolas&PERKOVIC,%20Ljubomir&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |