Afficher la notice abrégée

hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
dc.contributor.authorBEAUMONT, Olivier
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
dc.contributor.authorEYRAUD-DUBOIS, Lionel
hal.structure.identifierReformulations based algorithms for Combinatorial Optimization [Realopt]
dc.contributor.authorPESNEAU, Pierre
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
dc.contributor.authorRENAUD-GOUD, Paul
dc.date.accessioned2024-04-15T09:43:16Z
dc.date.available2024-04-15T09:43:16Z
dc.date.issued2013-09
dc.date.conference2013-09
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197751
dc.description.abstractEnWe consider allocation problems that arise in the context of service allocation in Clouds. More specifically, on the one part we assume that each Physical Machine (denoted as PM) is offering resources (memory, CPU, disk, network). On the other part, we assume that each application in the IaaS Cloud comes as a set of services running as Virtual Machines (VMs) on top of the set of PMs. In turn, each service requires a given quantity of each resource on each machine where it runs (memory footprint, CPU, disk, network). Moreover, there exists a Service Level Agreement (SLA) between the Cloud provider and the client that can be expressed as follows: the client requires a minimal number of service instances which must be alive at the end of the day, with a given reliability (that can be converted into penalties paid by the provider). In this context, the goal for the Cloud provider is to find an allocation of VMs onto PMs so as to satisfy, at minimal cost, both capacity and reliability constraints for each service. In this paper, we propose a simple model for reliability constraints and we prove that it is possible to derive efficient heuristics.
dc.description.sponsorshipSimulation de systèmes de prochaine génération - ANR-11-INFR-0013
dc.language.isoen
dc.title.enReliable Service Allocation in Clouds with Memory and Capacity Constraints
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleResilience 2013, in conjunction with EuroPar 2013
bordeaux.countryDE
bordeaux.conference.cityAachen
bordeaux.peerReviewedoui
hal.identifierhal-00850125
hal.version1
hal.invitednon
hal.proceedingsoui
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00850125v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2013-09&rft.au=BEAUMONT,%20Olivier&EYRAUD-DUBOIS,%20Lionel&PESNEAU,%20Pierre&RENAUD-GOUD,%20Paul&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée