Afficher la notice abrégée

hal.structure.identifierSchool of Electrical Engineering and Computer Science [EECS]
dc.contributor.authorFLOCCHINI, Paola
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
dc.contributor.authorILCINKAS, David
hal.structure.identifierDépartement d'Informatique et d'Ingénierie [DII]
dc.contributor.authorPELC, Andrzej
hal.structure.identifierSchool of Computer Science [Ottawa]
dc.contributor.authorSANTORO, Nicola
dc.date.accessioned2024-04-15T09:42:19Z
dc.date.available2024-04-15T09:42:19Z
dc.date.issued2013-03
dc.identifier.issn0178-4617
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197671
dc.description.abstractEnWe consider the problem of exploring an anonymous unoriented ring by a team of k identical, oblivious, asynchronous mobile robots that can view the environment but cannot communicate. This weak scenario is standard when the spatial universe in which the robots operate is the two-dimensional plane, but (with one exception) has not been investigated before for networks. Our results imply that, although these weak capabilities of robots render the problem considerably more difficult, ring exploration by a small team of robots is still possible. We first show that, when k and n are not co-prime, the problem is not solvable in general, e.g., if k divides n there are initial placements of the robots for which gathering is impossible. We then prove that the problem is always solvable provided that n and k are co-prime, for k >= 17, by giving an exploration algorithm that always terminates, starting from arbitrary initial configurations. Finally, we consider the minimum number rho(n) of robots that can explore a ring of size n. As a consequence of our positive result we show that rho(n) is O(log n). We additionally prove that Omega(log n) robots are necessary for infinitely many n.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enmobile robots
dc.subject.enasynchronous
dc.subject.enoblivious
dc.subject.enexploration
dc.subject.enring
dc.title.enComputing Without Communicating: Ring Exploration by Asynchronous Oblivious Robots
dc.typeArticle de revue
dc.identifier.doi10.1007/s00453-011-9611-5
dc.subject.halInformatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
dc.subject.halInformatique [cs]/Algorithme et structure de données [cs.DS]
bordeaux.journalAlgorithmica
bordeaux.page562-583
bordeaux.volume65
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00912499
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00912499v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Algorithmica&rft.date=2013-03&rft.volume=65&rft.issue=3&rft.spage=562-583&rft.epage=562-583&rft.eissn=0178-4617&rft.issn=0178-4617&rft.au=FLOCCHINI,%20Paola&ILCINKAS,%20David&PELC,%20Andrzej&SANTORO,%20Nicola&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée