Accounting for landscape heterogeneity improves spatial predictions of tree vulnerability to drought
hal.structure.identifier | Nicholas School of the Environment | |
dc.contributor.author | SCHWANTES, Amanda M. | |
hal.structure.identifier | Department of Civil and Environmental Engineering | |
hal.structure.identifier | Department of Civil, Construction, and Environmental Engineering | |
dc.contributor.author | PAROLARI, Anthony J. | |
hal.structure.identifier | Nicholas School of the Environment | |
dc.contributor.author | SWENSON, Jennifer J. | |
hal.structure.identifier | Nicholas School of the Environment | |
hal.structure.identifier | Warnell School of Forestry and Natural Resources | |
dc.contributor.author | JOHNSON, Daniel M. | |
hal.structure.identifier | Interactions Sol Plante Atmosphère [UMR ISPA] | |
hal.structure.identifier | Nicholas School of the Environment | |
dc.contributor.author | DOMEC, Jean-Christophe | |
hal.structure.identifier | Nicholas School of the Environment | |
hal.structure.identifier | Stanford University | |
dc.contributor.author | JACKSON, Robert B. | |
hal.structure.identifier | Department of Civil and Environmental Engineering | |
hal.structure.identifier | Princeton Environmental Institute [Princeton University] [PEI] | |
dc.contributor.author | PELAK, Norman | |
hal.structure.identifier | Department of Civil and Environmental Engineering | |
hal.structure.identifier | Princeton Environmental Institute [Princeton University] [PEI] | |
dc.contributor.author | PORPORATO, Amilcare | |
dc.date.accessioned | 2024-04-08T12:05:12Z | |
dc.date.available | 2024-04-08T12:05:12Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0028-646X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/196344 | |
dc.description.abstractEn | As climate change continues, forest vulnerability to droughts and heatwaves is increasing, but vulnerability varies regionally and locally through landscape position. Also, most models used in forecasting forest responses to heat and drought do not incorporate relevant spatial processes. In order to improve spatial predictions of tree vulnerability, we employed a nonlinear stochastic model of soil moisture dynamics accounting for landscape differences in aspect, topography and soils. Across a watershed in central Texas we modeled dynamic water stress for a dominant tree species, Juniperus ashei, and projected future dynamic water stress through the 21st century. Modeled dynamic water stress tracked spatial patterns of remotely sensed drought-induced canopy loss. Accuracy in predicting drought-impacted stands increased from 60%, accounting for spatially variable soil conditions, to 72% when also including lateral redistribution of water and radiation/temperature effects attributable to aspect. Our analysis also suggests that dynamic water stress will increase through the 21st century, with trees persisting at only selected microsites. Favorable microsites/refugia may exist across a landscape where trees can persist; however, if future droughts are too severe, the buffering capacity of an heterogeneous landscape could be overwhelmed. Incorporating spatial data will improve projections of future tree water stress and identification of potential resilient refugia. | |
dc.language.iso | en | |
dc.publisher | Wiley | |
dc.subject | soil moisture | |
dc.subject.en | climate change | |
dc.subject.en | drought-induced tree mortality | |
dc.subject.en | heat load | |
dc.subject.en | landscape diversity | |
dc.subject.en | stochastic processes | |
dc.subject.en | topographic convergence | |
dc.subject.en | water stress | |
dc.title.en | Accounting for landscape heterogeneity improves spatial predictions of tree vulnerability to drought | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1111/nph.15274 | |
dc.subject.hal | Sciences du Vivant [q-bio] | |
dc.subject.hal | Sciences de l'environnement | |
bordeaux.journal | New Phytologist | |
bordeaux.page | 132-146 | |
bordeaux.volume | 220 | |
bordeaux.hal.laboratories | Interactions Soil Plant Atmosphere (ISPA) - UMR 1391 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Bordeaux Sciences Agro | |
bordeaux.institution | INRAE | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02623775 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02623775v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=New%20Phytologist&rft.date=2018&rft.volume=220&rft.issue=1&rft.spage=132-146&rft.epage=132-146&rft.eissn=0028-646X&rft.issn=0028-646X&rft.au=SCHWANTES,%20Amanda%20M.&PAROLARI,%20Anthony%20J.&SWENSON,%20Jennifer%20J.&JOHNSON,%20Daniel%20M.&DOMEC,%20Jean-Christophe&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |