Show simple item record

hal.structure.identifierEcosystèmes montagnards [UR EMGR]
dc.contributor.authorMAO, Zhun
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
hal.structure.identifierEcole Centrale de Pékin
dc.contributor.authorYANG, Ming
hal.structure.identifierEcosystèmes montagnards [UR EMGR]
dc.contributor.authorBOURRIER, Franck
hal.structure.identifierBotAnique et BioinforMatique de l'Architecture des Plantes
dc.contributor.authorFOURCAUD, Thierry
dc.date.accessioned2024-04-08T12:02:38Z
dc.date.available2024-04-08T12:02:38Z
dc.date.issued2014
dc.identifier.issn0032-079X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/196217
dc.description.abstractEnBackground and aims: The root reinforcement (RR) models commonly used in slope stability modelling can be simply explained as a single soil additional cohesion parameter estimated with simple analytical functions of root traits. We have simulated 3D direct shear tests using the standard implicit Finite Element Method (FEM) and the Discrete Element Method (DEM), aiming to (i) evaluate the RR models and (ii) compare the two numerical approaches. Methods: In homogeneous soil with low cohesion, 36 straight, non-branched and thin root models were implanted in three parallel lines. Root traits, including orientation relative to the shear direction (45°, 90° and −45°), longitudinal modulus of elasticity (10 MPa and 100 MPa), and bending and compressive behaviours (beam, truss and cable) were investigated. Results: Compared to the FEM, the DEM achieved consistent results and avoided convergence problems, but required longer computation time and used parameters potentially difficult to identify. Root reinforcement did not occur until significant plastic deformation of soil. The RR values estimated by the shear tests were much lower than those estimated by the usual RR models and were significantly dependent upon root traits. Conclusions: Ignoring the effect of root traits in RR models might lead to an important bias when using slope stability models.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subjectRoot traits
dc.subject.enNumerical analysis
dc.subject.enDirect shear test
dc.subject.enRoot reinforcement
dc.subject.enLandslide
dc.subject.enDiscrete element method
dc.subject.enFinite element method
dc.title.enEvaluation of root reinforcement models using numerical modelling approaches
dc.typeArticle de revue
dc.identifier.doi10.1007/s11104-014-2116-7
dc.subject.halSciences de l'environnement/Milieux et Changements globaux
bordeaux.journalPlant and Soil
bordeaux.page249-270
bordeaux.volume381
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.issue1-2
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-02634251
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02634251v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Plant%20and%20Soil&rft.date=2014&rft.volume=381&rft.issue=1-2&rft.spage=249-270&rft.epage=249-270&rft.eissn=0032-079X&rft.issn=0032-079X&rft.au=MAO,%20Zhun&YANG,%20Ming&BOURRIER,%20Franck&FOURCAUD,%20Thierry&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record