Show simple item record

hal.structure.identifierUniversity of Arizona
dc.contributor.authorMEREDITH, Laura K. Meredith
hal.structure.identifierUniversity of Arizona
dc.contributor.authorGIL-LOAIZA, Juliana
hal.structure.identifierAerodyne Research Inc.
dc.contributor.authorROSCIOLI, Joseph R.
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorWINGATE, Lisa
dc.date.accessioned2024-04-08T11:56:43Z
dc.date.available2024-04-08T11:56:43Z
dc.date.issued2019
dc.date.conference2019-12-08
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/195773
dc.description.abstractEnMicroorganisms play a significant role in shaping the composition of Earth’s atmosphere. Soils host rich microbial communities whose biogeochemical processes have both leading-order impacts on climate variability and susceptibility to global change feedbacks. Yet, the microbial actors and genetic diversity driving trace gas cycling in soils remain poorly understood, challenging attempts to model microbial contributions to biosphere-atmosphere interactions. New methods for integrating soil genomics into the study of biosphere-atmosphere trace gas fluxes are needed. Here, we present our approach for uncovering the genetic underpinnings of the microbe-mediated biogeochemical transformations in soils that drive significant trace gas fluxes. In past work, we constrained soil microbial contributions to biosphere-atmosphere exchange of carbonyl sulfide (COS or OCS)—a promising photosynthetic tracer—through controlled laboratory studies. This approach revealed microbial groups and types of carbonic anhydrase enzymes driving COS consumption by soil microbes,1 and identified coupled biological-abiotic processes driving soil COS emissions2, helping to build genome-informed constraints to biosphere-atmosphere interactions. We will present current efforts to extend this approach to constrain microbial contributions to trace gas fluxes in the Biosphere 2 tropical rainforest. We use the experimental ecosystem to control environmental drivers and amplify biosphere-atmosphere interaction within the enclosed structure. Using a suite of trace gas analyzers (concentrations and isotopomers) and measurement tools (probes, chambers) in key ecosystem locations (soil, stem, leaf, atmosphere) we constrain ecosystem fluxes across drought and rewet conditions. By integrating trace gas measurements and soil genomics data, we will test current understanding of the microbial genomics behind soil N2O emissions and develop new hypotheses regarding microbes and pathways driving soil VOC cycling.
dc.language.isoen
dc.title.enIntegrating soil genomics into the study of biosphere-atmosphere trace gas fluxes
dc.typeAutre communication scientifique (congrès sans actes - poster - séminaire...)
dc.subject.halSciences du Vivant [q-bio]
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.conference.titleAmerican Geophysical Union symposium (AGU Fall Meeting)
bordeaux.countryUS
bordeaux.conference.citySan Francisco
bordeaux.peerReviewedoui
hal.identifierhal-02789162
hal.version1
hal.invitedoui
hal.conference.end2019-12-13
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02789162v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2019&rft.au=MEREDITH,%20Laura%20K.%20Meredith&GIL-LOAIZA,%20Juliana&ROSCIOLI,%20Joseph%20R.&WINGATE,%20Lisa&rft.genre=conference


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record